54/74153
 54S/74S153
 54LS/74LS153
 DUAL 4-INPUT MULTIPLEXER

DESCRIPTION - The '153 is a high speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the ' 153 can generate any two functions of three variables.

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	$\begin{aligned} & \text { 74153PC, 74S153PC } \\ & \text { 74LS153PC } \end{aligned}$		9B
Ceramic DIP (D)	A	$\begin{aligned} & \text { 74153DC, 74S153DC } \\ & \text { 74LS153DC } \end{aligned}$	54153DM, 54S153DM 53LS153DM	6B
Flatpak (F)	A	$\begin{aligned} & \text { 74153FC, 74S153FC } \\ & \text { 74LS153FC } \end{aligned}$	54153FM, 54S153FM 54LS153FM	4L

CONNECTION DIAGRAM PINOUT A

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74S (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
$10 \mathrm{a}-\mathrm{I}_{3}$	Side A Data Inputs	1.0/1.0	1.25/1.25	0.5/0.25
$10 \mathrm{~b}-\mathrm{l} \mathrm{b}_{\mathrm{b}}$	Side B Data Inputs	1.0/1.0	1.25/1.25	0.5/0.25
So, S_{1}	Common Select Inputs	1.0/1.0	1.25/1.25	0.5/0.25
E_{a}	Side A Enable Input (Active LOW)	1.0/1.0	1.25/1.25	0.5/0.25
$\bar{E}_{\text {b }}$	Side B Enable Input (Active LOW)	1.0/1.0	1.25/1.25	0.5/0.25
Z_{a}	Side A Output	20/10	25/12.5	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$
Z_{b}	Side B Output	20/10	25/12.5	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION - The'153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$. The two 4 -input multiplexer circuits have individual active LOW Enables (\bar{E}_{a}, \bar{E}_{b}) which can be used to strobe the outputs independently. When the Enables (\bar{E}_{a}, \bar{E}_{b}) are HIGH, the corresponding outputs $\left(Z_{a}, Z_{b}\right)$ are forced LOW. The ' 153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
& Z_{a}=\bar{E}_{a} \bullet\left(I_{0 a} \bullet \bar{S}_{1} \bullet \bar{S}_{0}+I_{1 a} \bullet \bar{S}_{1} \bullet S_{0}+I_{2 a} \bullet S_{1} \bullet \bar{S}_{0}+I_{3 a} \bullet S_{1} \bullet S_{0}\right) \\
& Z_{b}=\bar{E}_{b} \cdot\left(I_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 b} \bullet S_{1} \bullet \bar{S}_{0}+I_{3 b} \bullet S_{1} \bullet S_{0}\right)
\end{aligned}
$$

The '153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is a function generator. The '153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

TRUTH TABLE

SELECT INPUTS		INPUTS (a or b)					OUTPUT
So	S1	$\overline{\mathrm{E}}$	10	11	12	13	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

$H=H I G H$ Voltage Level L = LOW Voltage Level $X=$ Immaterial

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

S YMBOL	PARAMETER		54/74		54/74S		54/74LS		UNITS	CONDITIONS
			Min	Max	Min	Max	Min	Max		
los	Output Short Circuit Current	XM	-20	-55	-40	-100	-20	-100	mA	$\mathrm{Vcc}=\mathrm{Max}$
		XC	-18	-57	-40	-100	-20	-100		
ICC	Power Supply Current	XM		52		70		10	mA	$\mathrm{Vcc}=\mathrm{Max}$
		XC		60		70		10		

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configuration)

SYMBOL	PARAMETER	54/74		54/74S		54/74LS		UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & R_{\mathrm{L}}=400 \Omega \end{aligned}$		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$		$C_{L}=15 \mathrm{pF}$			
		Min	Max	Min	Max	Min	Max		
tpLH tphL	Propagation Delay S_{n} to Z_{n}		$\begin{aligned} & 34 \\ & 34 \end{aligned}$		18 18		29	ns	Figs. 3-1, 3-20
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay \bar{E}_{n} to Z_{n}		$\begin{aligned} & 30 \\ & 23 \end{aligned}$		15 13.5		29 32	ns	Figs. 3-1, 3-4
tpLH tPHL	Propagation Delay In_{n} to Z_{n}		18		9.0 9.0		15 20	ns	Figs. 3-1, 3-5

