## 74195, LS195A, S195 Shift Registers

4-Bit Parallel Access Shift Register Product Specification

## Logic Products

## FEATURES

- Buffered Clock and Control inputs
- Shift right and paraliel load capability
- J-K (D) inputs to first stage
- Complement output from last stage
- Asynchronous Master Reset


## DESCRIPTION

The functional characteristics of the '195 4-Bit Parallel Access Shift register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-toserial data transfers at very high speeds.
The ' 195 operates on two primary modes: shift right ( $Q_{0} \rightarrow Q_{1}$ ) and parallei load, which are controlled by the state of the Parallel Enable ( $\overline{\text { PE }}$ ) input. Serial data enters the first flip-flop ( $Q_{0}$ ) via the $J$ and $\bar{K}$ inputs when the $\overline{P E}$ input is HIGH, and is shifted 1 bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each LOW-to-HIGH clock transition.

## PIN CONFIGURATION



| TYPE | TYPICAL $\mathbf{f}_{\text {MAX }}$ | TYPICAL SUPPLY CURRENT |
| :---: | :---: | :---: |
| 74195 | 39 MHz | 39 mA |
| 74 LS 195 A | 39 MHz | 14 mA |
| 74 S 195 | 105 MHz | 70 mA |

ORDERING CODE

| PACKAGES | COMMERCIAL RANGE <br> $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Plastic DIP | N74195N, N74LS195N, N74S195N |
| Plastic SO-16 | N74LS195AD |

## NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

| PINS | DESCRIPTION | 74 | $\mathbf{7 4 S}$ | 74LS |
| :---: | :---: | :---: | :---: | :---: |
| All | Inputs | 1 ul | 1 Sul | 1 LSul |
| All | Outputs | 10 ul | 10 Sul, | 10 LSul |

## NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{I}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathbb{L}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$

The J and $\overline{\mathrm{K}}$ inputs provide the flexibility of the JK type input for special applications and, by tying the two pins together, the simple D type input for general applications. The device appears as four
LOGIC SYMBOL

common clocked D flip-flops when the PE input is LOW. After the LOW-to-HIGH clock transition, data on the parallel inputs ( $D_{0}-D_{3}$ ) is transferred to the respective $Q_{0}-Q_{3}$ outputs.
LOGIC SYMBOL (IEEE/IEC)


Shift left operation $\left(Q_{3} \rightarrow Q_{2}\right)$ can be achieved by tying the $Q_{n}$ outputs to the $D_{n-1}$ ) inputs and holding the $\overline{\mathrm{PE}}$ input low.

All parallel and serial data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. The ' 195 utilizes edge-trig-
gering, therefore, there is no restriction on the activity of the $J, \bar{K}, D_{n}$, and $\overline{P E}$ inputs for logic operation, other than the set-up and release time requirements.
A LOW on the asynchronous Master Reset $(\overline{M R})$ input sets all $Q$ outputs LOW, indepen-
dent of any other input condition. The $\overline{M \bar{R}}$ on the 54/74195 is gated with the clock. Therefore, the LOW-to-HIGH MR transition should only occur while the clock is LOW to avoid false clocking on the 54/74195.

## LOGIC DIAGRAM



MODE SELECT - FUNCTION TABLE

| OPERATING MODES | INPUTS |  |  |  |  |  | OUTPUTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{M R}}$ | CP | $\overline{\text { PE }}$ | J | $\overline{\mathbf{K}}$ | $\mathrm{D}_{\mathrm{n}}$ | $\mathbf{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathbf{Q}_{2}$ | $\mathbf{Q}_{3}$ | $\overline{\mathbf{Q}}_{3}$ |
| Asynchronous reset | L | X | x | $x$ | x | X | L | L | L | L | H |
| Shift, set first stage | H | $\uparrow$ | h | h | h | $x$ | H | 90 | $\mathrm{q}_{1}$ | $\mathrm{q}_{2}$ | $\overline{\mathrm{q}}_{2}$ |
| Shift, reset first stage | H | $\uparrow$ | h | 1 | 1 | $x$ | L | 90 | $\mathrm{q}_{1}$ | $\mathrm{q}_{2}$ | $\underline{\underline{q}}_{2}$ |
| Shift, toggle first stage | H | $\uparrow$ | h | h | 1 | $x$ | $\bar{q}_{0}$ | 90 | $\mathrm{q}_{1}$ | $q_{2}$ | $\underline{\underline{q}}_{2}$ |
| Shift, retain first stage | H | $\uparrow$ | h | 1 | h | x | $\mathrm{q}_{0}$ | 90 | $\mathrm{q}_{1}$ | $\mathrm{q}_{2}$ | $\bar{Q}_{2}$ |
| Parallel load | H | $\uparrow$ | 1 | X | x | $d_{n}$ | $\mathrm{d}_{0}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{3}$ | $\overline{\mathrm{d}}_{3}$ |

$H=H I G H$ voitage level.
$\mathrm{L}=\mathrm{LOW}$ voltage level.
$\mathrm{X}=$ Don't care.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH. clock transition.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{d}_{\mathrm{n}}\left(\mathrm{G}_{\mathrm{n}}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition.
$\uparrow=$ LOW-to-HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

|  | PARAMETER | 74 | 74LS | 74S | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{Cc}}$ | Supply voltage | 7.0 | 7.0 | 7.0 | V |
| $V_{\text {IN }}$ | Input voltage | -0.5 to +5.5 | -0.5 to +7.0 | -0.5 to +5.5 | $V$ |
| $\mathrm{I}_{\mathrm{N}}$ | Input current | -30 to +5 | -30 to +1 | -30 to +5 | mA |
| Vout | Voltage applied to output in HIGH output state | -0.5 to $+V_{c c}$ | -0.5 to $+V_{c c}$ | -0.5 to $+V_{c c}$ | V |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature range | 0 to 70 |  |  | ${ }^{\circ} \mathrm{C}$ |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER |  | 74 |  |  | 74LS |  |  | 745 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max | Min | Nom | Max |  |
| $V_{\text {cc }}$ | Supply voltage | 4.75 | 5.0 | 5.25 | 4.75 | 5.0 | 5.25 | 4.75 | 5.0 | 5.25 | V |
| $\mathrm{V}_{1 \mathrm{H}}$ | HIGH-level input voltage | 2.0 |  |  | 2.0 |  |  | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage |  |  | +0.8 |  |  | +0.8 |  |  | +0.8 | V |
| IIK | Input clamp current |  |  | -12 |  |  | -18 |  |  | -18 | mA |
| IOH | HIGH-level output current |  |  | -800 |  |  | -400 |  |  | -1000 | $\mu \mathrm{A}$ |
| $\mathrm{IOL}^{\text {l }}$ | LOW-level output current |  |  | 16 |  |  | 8 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature | 0 |  | 70 | 0 |  | 70 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

| PARAMETER |  | TEST CONDITIONS ${ }^{1}$ |  | 74195 |  |  | 74LS195A |  |  | 74S195 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ ${ }^{2}$ | Max | Min | Typ ${ }^{2}$ | Max | Min | Typ ${ }^{2}$ | Max |  |
| VOH | HIGH-level output voltage |  |  | $\begin{aligned} & V_{C C}=M I N, V_{I H}=M I N, \\ & I_{I L}=M A X, I_{O H}=M A X \end{aligned}$ |  | 2.4 | 3.4 |  | 2.7 | 3.4 |  | 2.7 | 3.4 |  | V |
| $V_{O L}$ | LOW-level output voltage | $\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=M I N, \\ & V_{I L}=M A X \end{aligned}$ | IOL $=$ MAX |  | 0.2 | 0.4 |  | 0.35 | 0.5 |  |  | 0.5 | V |
|  |  |  | $\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}(74 \mathrm{LS})$ |  |  |  |  | 0.25 | 0.4 |  |  |  | V |
| $\mathrm{V}_{\mathrm{IK}}$ | Input clamp voltage | $V_{G C}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$ |  |  |  | -1.5 |  |  | -1.5 |  |  | -1.2 | $V$ |
| 1 | Input current at maximum input voltage | $V_{C C}=$ MAX | $V_{1}=5.5 \mathrm{~V}$ |  |  | 1.0 |  |  |  |  |  | 1.0 | mA |
|  |  |  | $V_{1}=7.0 \mathrm{~V}$ |  |  |  |  |  | 0.1 |  |  |  | mA |
| $\mathrm{IIH}^{\text {H }}$ | HIGH-level input current | $V_{C C}=$ MAX | $V_{1}=2.4 \mathrm{~V}$ |  |  | 40 |  |  |  |  |  |  | $\mu \mathrm{A}$ |
|  |  |  | $V_{1}=2.7 \mathrm{~V}$ |  |  |  |  |  | 20 |  |  | 50 | $\mu \mathrm{A}$ |
| IIL | LOW-level input current | $V_{C C}=M A X$ | $\mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  | -1.6 |  |  | -0.4 |  |  |  | mA |
|  |  |  | $V_{1}=0.5 \mathrm{~V}$ |  |  |  |  |  |  |  |  | -2 | mA |
| los | Short-circuit output current ${ }^{3}$ | $V_{C C}=M A X$ |  | -18 |  | -57 | -20 |  | -100 | -40 |  | -100 | mA |
| ICC | Supply current ${ }^{4}$ (total) | $V_{C C}=\mathrm{MAX}$ |  |  | 39 | 63 |  | 14 | 21 |  | 70 | 109 | mA |

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Ios is tested with $V_{\text {OUT }}=+0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}+0.5 \mathrm{~V}$. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. With all outputs open, $\overline{\mathrm{PE}}$ grounded, and 4.5 V applied to the $\mathrm{J}, \overline{\mathrm{K}}$, and Data inputs, $\mathrm{I}_{\mathrm{cc}}$ is measured by applying a momentary ground, followed by 4.5 V to $\overline{\mathrm{MR}}$, and then a momentary ground, followed by 4.5 V to clock.

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$


NOTE:
Per industry convention, $f_{\text {MAX }}$ is the worst case value of the maximurn device operating frequency with no constraints on $t_{r}$, $t_{\text {f }}$, puise width or duty cycle.
AC SET-UP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

| PARAMETER |  | TEST CONDITIONS | 74 |  | 74LS |  | 745 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |
| $t_{\text {w }}$ | Clock pulse width |  | Waveform 1 | 16 |  | 16 |  | 7 |  | ns |
| tw | Master Reset pulse width | Waveform 2 | 12 |  | 12 |  | 12 |  | ns |
| $\mathrm{t}_{\mathrm{s}}$ | Set-up time, J, $\overline{\mathrm{K}}$ and data to clock | Waveform 3 | 20 |  | 15 |  | 5.0 |  | ns |
| $t_{n}$ | Hoid time, J, $\bar{K}$ and data to clock | Waveform 3 | 0 |  | 0 |  | 3.0 |  | ns |
| $\mathrm{t}_{\text {s }}$ | Set-up time, $\overline{\text { PE }}$ to clock | Waveform 4 | 25 |  | 25 |  | 11 |  | ns |
| $t_{h}$ | Hold time, $\overline{\mathrm{PE}}$ to clock | Waveform 4 | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {rec }}$ | Recovery time, $\overline{\mathrm{MR}}$ to clack | Waveform 2 | 25 |  | 25 |  | 9.0 |  | ns |

## AC WAVEFORMS

| wroeeros <br> $V_{M}=1.5 \mathrm{~V}$ for 74 and $74 \mathrm{~S} ; \mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for 74 LS . <br> Waveform 1. Clock To Output Delays And Clock Pulse Width | Waveform 2. Master Reset Pulse Width, Master Reset To Output Delay And Master Reset To Clock Recovery Time |
| :---: | :---: |
| $V_{M}=1.5 \mathrm{~V}$ for 74 and $74 \mathrm{~S}, \mathrm{~V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for 74 LS . <br> The shaded areas indicate when the input is permitted to change for prodictable output performance. <br> Waveform 3. Data Set-up And Hold Times | $V_{M}=1.5 \mathrm{~V}$ for 74 and $74 \mathrm{~S} ; \mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for 74 LS . The shaded areas indicate when the input is permitted to change for predictable output performance. <br> Waveform 4. Set-up And Hold Times Parallel Enable To Clock |

[^0]5-388

## TEST CIRCUITS AND WAVEFORMS


$V_{M}=1.3 \mathrm{~V}$ for 74 LS : $V_{M}=1.5 \mathrm{~V}$ for all other TTL tamities.
Test Circuit For 74 Totem-Pole Outputs
Input Pulse Definition
DEFINITIONS
$R_{L}=$ Load resistor to $V_{C C i}$ see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$
of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$t_{\text {TLH, }} \mathrm{t}_{\text {THL }}$ Values should be less than or equal to the table entries.


[^0]:    December 4, 1985

