
Features
• High-performance, Low-power AVR ® 8-bit Microcontroller
• Advanced RISC Architecture

– 131 Powerful Instructions – Most Single-clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

• High Endurance Non-volatile Memory segments
– 16K Bytes of In-System Self-p rogrammable Flash program memory
– 512 Bytes EEPROM
– 1K Byte Internal SRAM
– Write/Erase Cycles: 10,000 Flash/1 00,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C (1)

– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-W rite Operation

– Programming Lock for Software Security
• JTAG (IEEE std. 1149.1 Compliant) Interface

– Boundary-scan Capabilities A ccording to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, an d Lock Bits through the JTAG Interface

• Peripheral Features
– Two 8-bit Timer/Counters with Se parate Prescalers and Compare Modes
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture

Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC

8 Single-ended Channels
7 Differential Channels in TQFP Package Only
2 Differential Channels with Prog rammable Gain at 1x, 10x, or 200x

– Byte-oriented Two-wi re Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby

and Extended Standby
• I/O and Packages

– 32 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

• Operating Voltages
– 2.7 - 5.5V for ATmega16L
– 4.5 - 5.5V for ATmega16

• Speed Grades
– 0 - 8 MHz for ATmega16L
– 0 - 16 MHz for ATmega16

• Power Consumption @ 1 MHz, 3V, and 25 °C for ATmega16L
– Active: 1.1 mA
– Idle Mode: 0.35 mA
– Power-down Mode: < 1 µA

8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash

ATmega16
ATmega16L

Note: Not recommended for new
designs.

2
2466R–AVR–06/08

ATmega16(L)

Pin
Configurations

Figure 1. Pinout ATmega16

Disclaimer Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

(XCK/T0) PB0
(T1) PB1

(INT2/AIN0) PB2
(OC0/AIN1) PB3

(SS) PB4
(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3

(OC1B) PD4
(OC1A) PD5
(ICP1) PD6

PA0 (ADC0)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PC0 (SCL)
PD7 (OC2)

PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)

(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2

(I
N

T
1)

 P
D

3
(O

C
1B

)
 P

D
4

(O
C

1A
)

 P
D

5
(I

C
P

1)
 P

D
6

(O
C

2)
 P

D
7

V
C

C
G

N
D

(S
C

L)
 P

C
0

(S
D

A
)

 P
C

1
(T

C
K

)
 P

C
2

(T
M

S
)

 P
C

3

P
B

4
 (

S
S

)
P

B
3

 (
A

IN
1/

O
C

0)
P

B
2

 (
A

IN
0/

IN
T

2)
P

B
1

 (
T

1)
P

B
0

 (
X

C
K

/T
0)

G
N

D
V

C
C

P
A

0
 (

A
D

C
0)

P
A

1
 (

A
D

C
1)

P
A

2
 (

A
D

C
2)

P
A

3
 (

A
D

C
3)

PDIP

TQFP/QFN/MLF

NOTE:
Bottom pad should
be soldered to ground.

3
2466R–AVR–06/08

ATmega16(L)

Overview The ATmega16 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega16 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.

Block Diagram Figure 2. Block Diagram

INTERNAL
OSCILLATOR

OSCILLATOR

WATCHDOG
TIMER

MCU CTRL.
& TIMING

OSCILLATOR

TIMERS/
COUNTERS

INTERRUPT
UNIT

STACK
POINTER

EEPROM

SRAM

STATUS
REGISTER

USART

PROGRAM
COUNTER

PROGRAM
FLASH

INSTRUCTION
REGISTER

INSTRUCTION
DECODER

PROGRAMMING
LOGIC SPI

ADC
INTERFACE

COMP.
INTERFACE

PORTA DRIVERS/BUFFERS

PORTA DIGITAL INTERFACE

GENERAL
PURPOSE

REGISTERS

X

Y

Z

ALU

+
-

PORTC DRIVERS/BUFFERS

PORTC DIGITAL INTERFACE

PORTB DIGITAL INTERFACE

PORTB DRIVERS/BUFFERS

PORTD DIGITAL INTERFACE

PORTD DRIVERS/BUFFERS

XTAL1

XTAL2

RESET

CONTROL
LINES

VCC

GND

MUX &
ADC

AREF

PA0 - PA7 PC0 - PC7

PD0 - PD7PB0 - PB7

AVR CPU

TWI

AVCC

INTERNAL
CALIBRATED
OSCILLATOR

4
2466R–AVR–06/08

ATmega16(L)

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATmega16 provides the following features: 16K bytes of In-System Programmable Flash
Program memory with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 32
general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-
scan, On-chip Debugging support and programming, three flexible Timer/Counters with com-
pare modes, Internal and External Interrupts, a serial programmable USART, a byte oriented
Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with
programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscil-
lator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops
the CPU while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters,
SPI port, and interrupt system to continue functioning. The Power-down mode saves the register
contents but freezes the Oscillator, disabling all other chip functions until the next External Inter-
rupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run,
allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC
Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and
ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/reso-
nator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up
combined with low-power consumption. In Extended Standby mode, both the main Oscillator
and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the Application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel ATmega16 is a powerful microcontroller that provides a highly-flexible and cost-effec-
tive solution to many embedded control applications.

The ATmega16 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators,
and evaluation kits.

Pin Descriptions

VCC Digital supply voltage.

GND Ground.

Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port A output buffers have sym-
metrical drive characteristics with both high sink and source capability. When pins PA0 to PA7
are used as inputs and are externally pulled low, they will source current if the internal pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

5
2466R–AVR–06/08

ATmega16(L)

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATmega16 as listed on page
58.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins
PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

Port C also serves the functions of the JTAG interface and other special features of the
ATmega16 as listed on page 61.

Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega16 as listed on page
63.

RESET Reset Input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page
38. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally con-
nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.

AREF AREF is the analog reference pin for the A/D Converter.

6
2466R–AVR–06/08

ATmega16(L)

Resources A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
Note: 1.

Data Retention Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

7
2466R–AVR–06/08

ATmega16(L)

About Code
Examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C Compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C Compiler documen-
tation for more details.

8
2466R–AVR–06/08

ATmega16(L)

AVR CPU Core

Introduction This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Architectural
Overview

Figure 3. Block Diagram of the AVR MCU Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash Program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ir
e

ct
 A

d
d

re
ss

in
g

In
d

ir
e

ct
 A

d
d

re
ss

in
g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n

9
2466R–AVR–06/08

ATmega16(L)

Program Flash memory space is divided in two sections, the Boot program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack
Pointer SP is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global
interrupt enable bit in the Status Register. All interrupts have a separate interrupt vector in the
interrupt vector table. The interrupts have priority in accordance with their interrupt vector posi-
tion. The lower the interrupt vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, $20 - $5F.

ALU – Arithmetic
Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

Status Register The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

10
2466R–AVR–06/08

ATmega16(L)

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

11
2466R–AVR–06/08

ATmega16(L)

General Purpose
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer Registers can be set to index any register in the file.

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register Low Byte

R27 $1B X-register High Byte

R28 $1C Y-register Low Byte

R29 $1D Y-register High Byte

R30 $1E Z-register Low Byte

R31 $1F Z-register High Byte

12
2466R–AVR–06/08

ATmega16(L)

The X-register, Y-
register and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the Data Space. The three indirect
address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer. If software reads the Program Counter from the Stack after a call or an interrupt, unused
bits (15:13) should be masked out.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above $60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

15 XH XL 0

X - register 7 0 7 0

R27 ($1B) R26 ($1A)

15 YH YL 0

Y - register 7 0 7 0

R29 ($1D) R28 ($1C)

15 ZH ZL 0

Z - register 7 0 7 0

R31 ($1F) R30 ($1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

13
2466R–AVR–06/08

ATmega16(L)

Instruction
Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 7. Single Cycle ALU Operation

Reset and
Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate reset
vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 259 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 45. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU

14
2466R–AVR–06/08

ATmega16(L)

0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the General Interrupt Control Register (GICR). Refer to “Interrupts” on page 45 for more
information. The Reset Vector can also be moved to the start of the boot Flash section by pro-
gramming the BOOTRST Fuse, see “Boot Loader Support – Read-While-Write Self-
Programming” on page 246.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

15
2466R–AVR–06/08

ATmega16(L)

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Interrupt Response
Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

Assembly Code Example

sei ; set global interrupt enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

16
2466R–AVR–06/08

ATmega16(L)

AVR ATmega16

Memories
This section describes the different memories in the ATmega16. The AVR architecture has two
main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmega16 features an EEPROM Memory for data storage. All three memory spaces are linear
and regular.

In-System
Reprogrammable
Flash Program
Memory

The ATmega16 contains 16K bytes On-chip In-System Reprogrammable Flash memory for pro-
gram storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 8K x
16. For software security, the Flash Program memory space is divided into two sections, Boot
Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega16 Pro-
gram Counter (PC) is 13 bits wide, thus addressing the 8K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in “Boot Loader Support – Read-While-Write Self-Programming” on page
246. “Memory Programming” on page 259 contains a detailed description on Flash data serial
downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
– Load Program Memory Instruction Description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 13.

Figure 8. Program Memory Map

$0000

$1FFF

Application Flash Section

Boot Flash Section

17
2466R–AVR–06/08

ATmega16(L)

SRAM Data
Memory

Figure 9 shows how the ATmega16 SRAM Memory is organized.

The lower 1120 Data Memory locations address the Register File, the I/O Memory, and the inter-
nal data SRAM. The first 96 locations address the Register File and I/O Memory, and the next
1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, and the 1024 bytes of internal data
SRAM in the ATmega16 are all accessible through all these addressing modes. The Register
File is described in “General Purpose Register File” on page 11.

Figure 9. Data Memory Map

Register File

R0
R1
R2

R29
R30
R31

I/O Registers
$00
$01
$02

...

$3D
$3E
$3F

...

$0000
$0001
$0002

$001D
$001E
$001F

$0020
$0021
$0022

...

$005D
$005E
$005F

...

Data Address Space

$0060
$0061

$045E
$045F

...

Internal SRAM

18
2466R–AVR–06/08

ATmega16(L)

Data Memory Access
Times

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkCPU cycles as described in Figure 10.

Figure 10. On-chip Data SRAM Access Cycles

EEPROM Data
Memory

The ATmega16 contains 512 bytes of data EEPROM memory. It is organized as a separate data
space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.

For a detailed description of SPI, JTAG, and Parallel data downloading to the EEPROM, see
page 273, page 278, and page 262, respectively.

EEPROM Read/Write
Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, however, lets
the user software detect when the next byte can be written. If the user code contains instructions
that write the EEPROM, some precautions must be taken. In heavily filtered power supplies, VCC
is likely to rise or fall slowly on Power-up/down. This causes the device for some period of time
to run at a voltage lower than specified as minimum for the clock frequency used. See “Prevent-
ing EEPROM Corruption” on page 22 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

clk

WR

RD

Data

Data

Address Address Valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction

19
2466R–AVR–06/08

ATmega16(L)

The EEPROM Address
Register – EEARH and
EEARL

• Bits 15..9 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL – specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

The EEPROM Data
Register – EEDR

• Bits 7..0 – EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

The EEPROM Control
Register – EECR

• Bits 7..4 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

20
2466R–AVR–06/08

ATmega16(L)

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN in SPMCR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader
Support – Read-While-Write Self-Programming” on page 246 for details about boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM Access, the EEAR or EEDR reGister will be modified, causing the
interrupted EEPROM Access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal – EERE – is the read strobe to the EEPROM. When the cor-
rect address is set up in the EEAR Register, the EERE bit must be written to a logic one to
trigger the EEPROM read. The EEPROM read access takes one instruction, and the requested
data is available immediately. When the EEPROM is read, the CPU is halted for four cycles
before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical pro-
gramming time for EEPROM access from the CPU.

Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse setting.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The examples

Table 1. EEPROM Programming Time

Symbol
Number of Calibrated RC

Oscillator Cycles (1) Typ Programming Time

EEPROM write (from CPU) 8448 8.5 ms

21
2466R–AVR–06/08

ATmega16(L)

also assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to data register

out EEDR,r16

; Write logical one to EEMWE

sbi EECR,EEMWE

; Start eeprom write by setting EEWE

sbi EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and data registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}

22
2466R–AVR–06/08

ATmega16(L)

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

EEPROM Write During
Power-down Sleep
Mode

When entering Power-down Sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the Oscillator continues running, and
as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.

Preventing EEPROM
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

23
2466R–AVR–06/08

ATmega16(L)

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This
can be done by enabling the internal Brown-out Detector (BOD). If the detection level of the
internal BOD does not match the needed detection level, an external low VCC Reset Protec-
tion circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

I/O Memory The I/O space definition of the ATmega16 is shown in “Register Summary” on page 331.

All ATmega16 I/Os and peripherals are placed in the I/O space. The I/O locations are accessed
by the IN and OUT instructions, transferring data between the 32 general purpose working regis-
ters and the I/O space. I/O Registers within the address range $00 - $1F are directly bit-
accessible using the SBI and CBI instructions. In these registers, the value of single bits can be
checked by using the SBIS and SBIC instructions. Refer to the Instruction Set section for more
details. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must
be used. When addressing I/O Registers as data space using LD and ST instructions, $20 must
be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI
instructions will operate on all bits in the I/O Register, writing a one back into any flag read as
set, thus clearing the flag. The CBI and SBI instructions work with registers $00 to $1F only.

The I/O and Peripherals Control Registers are explained in later sections.

24
2466R–AVR–06/08

ATmega16(L)

System Clock
and Clock
Options

Clock Systems
and their
Distribution

Figure 11 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in “Power Manage-
ment and Sleep Modes” on page 32. The clock systems are detailed Figure 11.

Figure 11. Clock Distribution

CPU Clock – clk CPU The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

I/O Clock – clk I/O The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clkI/O is halted, enabling TWI address reception in all sleep modes.

Flash Clock – clk FLASH The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

Asynchronous Timer
Clock – clk ASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external 32 kHz clock crystal. The dedicated clock domain allows using this
Timer/Counter as a real-time counter even when the device is in sleep mode.

General I/O
Modules

Asynchronous
Timer/Counter

ADC CPU Core RAM

clkI/O

clkASY

AVR Clock
Control Unit

clkCPU

Flash and
EEPROM

clkFLASH

clkADC

Source Clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Clock
Multiplexer

Watchdog Clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-frequency
Crystal Oscillator

External RC
Oscillator

External Clock

25
2466R–AVR–06/08

ATmega16(L)

ADC Clock – clk ADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

Clock Sources The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from Reset, there is as an additional delay allowing the power to reach a stable level before
commencing normal operation. The Watchdog Oscillator is used for timing this real-time part of
the start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table
3. The frequency of the Watchdog Oscillator is voltage dependent as shown in “ATmega16 Typ-
ical Characteristics” on page 299.

Default Clock
Source

The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source setting is
therefore the 1 MHz Internal RC Oscillator with longest startup time. This default setting ensures
that all users can make their desired clock source setting using an In-System or Parallel
Programmer.

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 12. Either a quartz crystal or a
ceramic resonator may be used. The CKOPT Fuse selects between two different Oscillator
amplifier modes. When CKOPT is programmed, the Oscillator output will oscillate will a full rail-
to-rail swing on the output. This mode is suitable when operating in a very noisy environment or
when the output from XTAL2 drives a second clock buffer. This mode has a wide frequency
range. When CKOPT is unprogrammed, the Oscillator has a smaller output swing. This reduces
power consumption considerably. This mode has a limited frequency range and it can not be
used to drive other clock buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and 16 MHz with
CKOPT programmed. C1 and C2 should always be equal for both crystals and resonators. The
optimal value of the capacitors depends on the crystal or resonator in use, the amount of stray
capacitance, and the electromagnetic noise of the environment. Some initial guidelines for

Table 2. Device Clocking Options Select(1)

Device Clocking Option CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1010

External Low-frequency Crystal 1001

External RC Oscillator 1000 - 0101

Calibrated Internal RC Oscillator 0100 - 0001

External Clock 0000

Table 3. Number of Watchdog Oscillator Cycles

Typ Time-out (V CC = 5.0V) Typ Time-out (V CC = 3.0V) Number of Cycles

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 64K (65,536)

26
2466R–AVR–06/08

ATmega16(L)

choosing capacitors for use with crystals are given in Table 4. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

Figure 12. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 4.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

Table 4. Crystal Oscillator Operating Modes

CKOPT CKSEL3..1
 Frequency Range

(MHz)
Recommended Range for Capacitors
C1 and C2 for Use with Crystals (pF)

1 101(1) 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 ≤ 12 - 22

XTAL2

XTAL1

GND

C2

C1

27
2466R–AVR–06/08

ATmega16(L)

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
5.

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

Table 5. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0 SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

0 00 258 CK(1) 4.1 ms
Ceramic resonator, fast
rising power

0 01 258 CK(1) 65 ms
Ceramic resonator, slowly
rising power

0 10 1K CK(2) –
Ceramic resonator, BOD
enabled

0 11 1K CK(2) 4.1 ms
Ceramic resonator, fast
rising power

1 00 1K CK(2) 65 ms
Ceramic resonator, slowly
rising power

1 01 16K CK –
Crystal Oscillator, BOD
enabled

1 10 16K CK 4.1 ms
Crystal Oscillator, fast
rising power

1 11 16K CK 65 ms
Crystal Oscillator, slowly
rising power

28
2466R–AVR–06/08

ATmega16(L)

Low-frequency
Crystal Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-frequency Crystal
Oscillator must be selected by setting the CKSEL Fuses to “1001”. The crystal should be con-
nected as shown in Figure 12. By programming the CKOPT Fuse, the user can enable internal
capacitors on XTAL1 and XTAL2, thereby removing the need for external capacitors. The inter-
nal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 6.

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

External RC
Oscillator

For timing insensitive applications, the external RC configuration shown in Figure 13 can be
used. The frequency is roughly estimated by the equation f = 1/(3RC). C should be at least 22
pF. By programming the CKOPT Fuse, the user can enable an internal 36 pF capacitor between
XTAL1 and GND, thereby removing the need for an external capacitor. For more information on
Oscillator operation and details on how to choose R and C, refer to the External RC Oscillator
application note.

Figure 13. External RC Configuration

The Oscillator can operate in four different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..0 as shown in Table 7.

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 1K CK(1) 4.1 ms Fast rising power or BOD enabled

01 1K CK(1) 65 ms Slowly rising power

10 32K CK 65 ms Stable frequency at start-up

11 Reserved

Table 7. External RC Oscillator Operating Modes

 CKSEL3..0 Frequency Range (MHz)

0101 0.1 ≤ 0.9

0110 0.9 - 3.0

0111 3.0 - 8.0

1000 8.0 - 12.0

XTAL2

XTAL1

GND
C

R

VCC

NC

29
2466R–AVR–06/08

ATmega16(L)

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 8.

Note: 1. This option should not be used when operating close to the maximum frequency of the device.

Calibrated Internal
RC Oscillator

The Calibrated Internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All fre-
quencies are nominal values at 5V and 25°C. This clock may be selected as the sys-tem clock
by programming the CKSEL Fuses as shown in Table 9. If selected, it will operate with no exter-
nal components. The CKOPT Fuse should always be unpro-grammed when using this clock
option. During Reset, hardware loads the calibration byte into the OSCCAL Register and
thereby automatically calibrates the RC Oscillator. At 5V, 25°C and 1.0, 2.0, 4.0 or 8.0 MHz
Oscillator frequency selected, this calibration gives a frequency within ± 3% of the nominal fre-
quency. Using calibration methods as described in application notes available at
www.atmel.com/avr it is possible to achieve ±1% accuracy at any given VCC and Temperature.
When this Oscillator is used as the Chip Clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the reset time-out. For more information on the pre-programmed cali-
bration value, see the section “Calibration Byte” on page 261.

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 10. XTAL1 and XTAL2 should be left unconnected (NC).

Note: 1. The device is shipped with this option selected.

Table 8. Start-up Times for the External RC Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 18 CK – BOD enabled

01 18 CK 4.1 ms Fast rising power

10 18 CK 65 ms Slowly rising power

11 6 CK(1) 4.1 ms Fast rising power or BOD enabled

Table 9. Internal Calibrated RC Oscillator Operating Modes

 CKSEL3..0 Nominal Frequency (MHz)

0001(1) 1.0

0010 2.0

0011 4.0

0100 8.0

Table 10. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1 ms Fast rising power

10(1) 6 CK 65 ms Slowly rising power

11 Reserved

30
2466R–AVR–06/08

ATmega16(L)

Oscillator Calibration
Register – OSCCAL

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove process vari-
ations from the Oscillator frequency. This is done automatically during Chip Reset. When
OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this regis-
ter will increase the frequency of the Internal Oscillator. Writing $FF to the register gives the
highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash
access. If EEPROM or Flash is written, do not calibrate to more than 10% above the nominal fre-
quency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for
calibration to 1.0, 2.0, 4.0, or 8.0 MHz. Tuning to other values is not guaranteed, as indicated in
Table 11.

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 11. Internal RC Oscillator Frequency Range.

OSCCAL Value
Min Frequency in Percentage of

Nominal Frequency (%)
Max Frequency in Percentage of

Nominal Frequency (%)

$00 50 100

$7F 75 150

$FF 100 200

31
2466R–AVR–06/08

ATmega16(L)

External Clock To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
14. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.
By programming the CKOPT Fuse, the user can enable an internal 36 pF capacitor between
XTAL1 and GND.

Figure 14. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 12.

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in reset during such changes in the clock frequency.

Timer/Counter
Oscillator

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is
connected directly between the pins. No external capacitors are needed. The Oscillator is opti-
mized for use with a 32.768 kHz watch crystal. Applying an external clock source to TOSC1 is
not recommended.
Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator

and the internal capacitors have the same nominal value of 36 pF.

Table 12. Start-up Times for the External Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1 ms Fast rising power

10 6 CK 65 ms Slowly rising power

11 Reserved

EXTERNAL
CLOCK
SIGNAL

32
2466R–AVR–06/08

ATmega16(L)

Power
Management
and Sleep
Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the MCUCR Register
select which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, Standby, or
Extended Standby) will be activated by the SLEEP instruction. See Table 13 for a summary. If
an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is
then halted for four cycles in addition to the start-up time, it executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a Reset occurs during sleep
mode, the MCU wakes up and executes from the Reset Vector.

Figure 11 on page 24 presents the different clock systems in the ATmega16, and their distribu-
tion. The figure is helpful in selecting an appropriate sleep mode.

MCU Control Register
– MCUCR

The MCU Control Register contains control bits for power management.

• Bits 7, 5, 4 – SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 13.

Note: 1. Standby mode and Extended Standby mode are only available with external crystals or
resonators.

• Bit 6 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmers
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 13. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Extended Standby(1)

33
2466R–AVR–06/08

ATmega16(L)

Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial
Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

ADC Noise
Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts, the
Two-wire Serial Interface address watch, Timer/Counter2 and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface Address Match Interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, an External level interrupt on INT0 or INT1, or an external inter-
rupt on INT2 can wake up the MCU from ADC Noise Reduction mode.

Power-down Mode When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the External interrupts, the
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
address match interrupt, an External level interrupt on INT0 or INT1, or an External interrupt on
INT2 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing oper-
ation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 68
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
reset time-out period, as described in “Clock Sources” on page 25.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set, Timer/Counter2
will run during sleep. The device can wake up from either Timer Overflow or Output Compare
event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in
TIMSK, and the Global Interrupt Enable bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the Asynchronous Timer
should be considered undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clkASY, allowing operation only of asynchronous
modules, including Timer/Counter2 if clocked asynchronously.

34
2466R–AVR–06/08

ATmega16(L)

Standby Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

Extended Standby
Mode

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to
Power-save mode with the exception that the Oscillator is kept running. From Extended Standby
mode, the device wakes up in six clock cycles..

Notes: 1. External Crystal or resonator selected as clock source.
2. If AS2 bit in ASSR is set.
3. Only INT2 or level interrupt INT1 and INT0.

Table 14. Active Clock Domains and Wake Up Sources in the Different Sleep Modes

Active Clock domains Oscillators Wake-up Sources

Sleep
Mode clk CPU clk FLASH clk IO clk ADC clk ASY

Main Clock
Source Enabled

Timer Osc.
Enabled

INT2
INT1
INT0

TWI
Address

Match
Timer

2

SPM /
EEPROM

Ready ADC
Other

I/O

Idle X X X X X(2) X X X X X X

ADC
Noise
Redu-
ction

X X X X(2) X(3) X X X X

Power
Down

X(3) X

Power
Save

X(2) X(2) X(3) X X(2)

Standby(1) X X(3) X

Exten-
ded
Standby(1)

X(2) X X(2) X(3) X X(2)

35
2466R–AVR–06/08

ATmega16(L)

Minimizing Power
Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

Analog to Digital
Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter” on page 204
for details on ADC operation.

Analog Comparator When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to “Analog Comparator” on page 201 for details on how to
configure the Analog Comparator.

Brown-out Detector If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and
hence, always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Brown-out Detection” on page 40 for details on how to
configure the Brown-out Detector.

Internal Voltage
Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detector, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 42 for details on the start-up time.

Watchdog Timer If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 42 for details on how to configure the Watchdog Timer.

Port Pins When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is then to ensure that no pins drive resistive loads. In sleep modes where
the both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the
device will be disabled. This ensures that no power is consumed by the input logic when not
needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will
then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 54 for
details on which pins are enabled. If the input buffer is enabled and the input signal is left floating
or have an analog signal level close to VCC/2, the input buffer will use excessive power.

36
2466R–AVR–06/08

ATmega16(L)

JTAG Interface and
On-chip Debug
System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or
Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will
contribute significantly to the total current consumption. There are three alternative ways to
avoid this:

• Disable OCDEN Fuse.

• Disable JTAGEN Fuse.

• Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.

37
2466R–AVR–06/08

ATmega16(L)

System Control
and Reset

Resetting the AVR During Reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – absolute
jump – instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 15 shows the reset
logic. Table 15 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the Internal
Reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the CKSEL Fuses. The different selec-
tions for the delay period are presented in “Clock Sources” on page 25.

Reset Sources The ATmega16 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out
Reset threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register,
one of the scan chains of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG)
Boundary-scan” on page 228 for details.

38
2466R–AVR–06/08

ATmega16(L)

Figure 15. Reset Logic

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling).
2. VBOT may be below nominal minimum operating voltage for some devices. For devices where

this is the case, the device is tested down to VCC = VBOT during the production test. This guar-
antees that a Brown-out Reset will occur before VCC drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 1 for ATmega16L and BODLEVEL = 0 for ATmega16. BODLEVEL = 1 is not
applicable for ATmega16.

Table 15. Reset Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT

Power-on Reset
Threshold Voltage (rising)

1.4 2.3 V

Power-on Reset
Threshold Voltage
(falling)(1)

1.3 2.3 V

VRST
 RESET Pin Threshold
Voltage

0.1 VCC 0.9VCC V

tRST
Minimum pulse width on
RESET Pin

1.5 µs

VBOT

Brown-out Reset
Threshold Voltage(2)

BODLEVEL = 1 2.5 2.7 3.2
V

BODLEVEL = 0 3.6 4.0 4.5

tBOD

Minimum low voltage
period for Brown-out
Detection

BODLEVEL = 1 2 µs

BODLEVEL = 0 2 µs

VHYST
Brown-out Detector
hysteresis

50 mV

MCU Control and Status
Register (MCUCSR)

BODEN
BODLEVEL

Delay Counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

JT
R

F

JTAG Reset
Register

Watchdog
Oscillator

SUT[1:0]

Watchdog
Timer

Reset Circuit

Brown-out
Reset Circuit

Power-on
Reset Circuit

IN
T

E
R

N
A

L
R

E
S

E
T

C
O

U
N

T
E

R
 R

E
S

E
T

39
2466R–AVR–06/08

ATmega16(L)

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 15. The POR is activated whenever VCC is below the detection level. The
POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply
voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

Figure 16. MCU Start-up, RESET Tied to VCC.

Figure 17. MCU Start-up, RESET Extended Externally

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

40
2466R–AVR–06/08

ATmega16(L)

External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 15) will generate a reset, even if the clock is not running.
Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the
Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the MCU after
the Time-out period tTOUT has expired.

Figure 18. External Reset During Operation

Brown-out Detection ATmega16 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level dur-
ing operation by comparing it to a fixed trigger level. The trigger level for the BOD can be
selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL
programmed). The trigger level has a hysteresis to ensure spike free Brown-out Detection. The
hysteresis on the detection level should be interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- =
VBOT - VHYST/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled
(BODEN programmed), and VCC decreases to a value below the trigger level (VBOT- in Figure
19), the Brown-out Reset is immediately activated. When VCC increases above the trigger level
(VBOT+ in Figure 19), the delay counter starts the MCU after the Time-out period tTOUT has
expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-
ger than tBOD given in Table 15.

Figure 19. Brown-out Reset During Operation

CC

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

41
2466R–AVR–06/08

ATmega16(L)

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 42 for details on operation of the Watchdog Timer.

Figure 20. Watchdog Reset During Operation

MCU Control and
Status Register –
MCUCSR

The MCU Control and Status Register provides information on which reset source caused an
MCU Reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then reset
the MCUCSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the Reset Flags.

CK

CC

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

42
2466R–AVR–06/08

ATmega16(L)

Internal Voltage
Reference

ATmega16 features an internal bandgap reference. This reference is used for Brown-out Detec-
tion, and it can be used as an input to the Analog Comparator or the ADC. The 2.56V reference
to the ADC is generated from the internal bandgap reference.

Voltage Reference
Enable Signals and
Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 16. To save power, the reference is not always turned on. The ref-
erence is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is
the typical value at VCC = 5V. See characterization data for typical values at other VCC levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 17 on page 43. The WDR – Watchdog Reset – instruction resets the Watchdog
Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the ATmega16 resets and executes from the
Reset Vector. For timing details on the Watchdog Reset, refer to page 41.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be fol-
lowed when the Watchdog is disabled. Refer to the description of the Watchdog Timer Control
Register for details.

Figure 21. Watchdog Timer

Table 16. Internal Voltage Reference Characteristics

Symbol Parameter Min Typ Max Units

VBG Bandgap reference voltage 1.15 1.23 1.4 V

tBG Bandgap reference start-up time 40 70 µs

IBG Bandgap reference current consumption 10 µA

WATCHDOG
OSCILLATOR

43
2466R–AVR–06/08

ATmega16(L)

Watchdog Timer
Control Register –
WDTCR

• Bits 7..5 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bit 4 – WDTOE: Watchdog Turn-off Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure.

• Bit 3 – WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE
bit has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:

1. In the same operation, write a logic one to WDTOE and WDE. A logic one must be writ-
ten to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods
are shown in Table 17.

Bit 7 6 5 4 3 2 1 0

– – – WDTOE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17. Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT
Oscillator Cycles

Typical Time-out
at VCC = 3.0V

Typical Time-out
at VCC = 5.0V

0 0 0 16K (16,384) 17.1 ms 16.3 ms

0 0 1 32K (32,768) 34.3 ms 32.5 ms

0 1 0 64K (65,536) 68.5 ms 65 ms

0 1 1 128K (131,072) 0.14 s 0.13 s

1 0 0 256K (262,144) 0.27 s 0.26 s

1 0 1 512K (524,288) 0.55 s 0.52 s

1 1 0 1,024K (1,048,576) 1.1 s 1.0 s

1 1 1 2,048K (2,097,152) 2.2 s 2.1 s

44
2466R–AVR–06/08

ATmega16(L)

The following code example shows one assembly and one C function for turning off the WDT.
The example assumes that interrupts are controlled (for example by disabling interrupts globally)
so that no interrupts will occur during execution of these functions.

Assembly Code Example

WDT_off:

; Reset WDT

WDR

; Write logical one to WDTOE and WDE

in r16, WDTCR

ori r16, (1<<WDTOE)|(1<<WDE)

out WDTCR, r16

; Turn off WDT

ldi r16, (0<<WDE)

out WDTCR, r16

ret

C Code Example

void WDT_off(void)

{

/* Reset WDT*/

_WDR();

/* Write logical one to WDTOE and WDE */

WDTCR |= (1<<WDTOE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

}

45
2466R–AVR–06/08

ATmega16(L)

Interrupts This section describes the specifics of the interrupt handling as performed in ATmega16. For a
general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on
page 13.

Interrupt Vectors
in ATmega16

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see “Boot Loader Support – Read-While-Write Self-Programming” on page 246.

2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the Boot
Flash section. The address of each Interrupt Vector will then be the address in this table added
to the start address of the Boot Flash section.

Table 19 shows Reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 18. Reset and Interrupt Vectors

Vector No.
Program

Address (2) Source Interrupt Definition

1 $000(1) RESET External Pin, Power-on Reset, Brown-out
Reset, Watchdog Reset, and JTAG AVR
Reset

2 $002 INT0 External Interrupt Request 0

3 $004 INT1 External Interrupt Request 1

4 $006 TIMER2 COMP Timer/Counter2 Compare Match

5 $008 TIMER2 OVF Timer/Counter2 Overflow

6 $00A TIMER1 CAPT Timer/Counter1 Capture Event

7 $00C TIMER1 COMPA Timer/Counter1 Compare Match A

8 $00E TIMER1 COMPB Timer/Counter1 Compare Match B

9 $010 TIMER1 OVF Timer/Counter1 Overflow

10 $012 TIMER0 OVF Timer/Counter0 Overflow

11 $014 SPI, STC Serial Transfer Complete

12 $016 USART, RXC USART, Rx Complete

13 $018 USART, UDRE USART Data Register Empty

14 $01A USART, TXC USART, Tx Complete

15 $01C ADC ADC Conversion Complete

16 $01E EE_RDY EEPROM Ready

17 $020 ANA_COMP Analog Comparator

18 $022 TWI Two-wire Serial Interface

19 $024 INT2 External Interrupt Request 2

20 $026 TIMER0 COMP Timer/Counter0 Compare Match

21 $028 SPM_RDY Store Program Memory Ready

46
2466R–AVR–06/08

ATmega16(L)

Note: 1. The Boot Reset Address is shown in Table 100 on page 257. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega16 is:

Address Labels Code Comments

$000 jmp RESET ; Reset Handler

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

$006 jmp TIM2_COMP ; Timer2 Compare Handler

$008 jmp TIM2_OVF ; Timer2 Overflow Handler

$00A jmp TIM1_CAPT ; Timer1 Capture Handler

$00C jmp TIM1_COMPA ; Timer1 CompareA Handler

$00E jmp TIM1_COMPB ; Timer1 CompareB Handler

$010 jmp TIM1_OVF ; Timer1 Overflow Handler

$012 jmp TIM0_OVF ; Timer0 Overflow Handler

$014 jmp SPI_STC ; SPI Transfer Complete Handler

$016 jmp USART_RXC ; USART RX Complete Handler

$018 jmp USART_UDRE ; UDR Empty Handler

$01A jmp USART_TXC ; USART TX Complete Handler

$01C jmp ADC ; ADC Conversion Complete Handler

$01E jmp EE_RDY ; EEPROM Ready Handler

$020 jmp ANA_COMP ; Analog Comparator Handler

$022 jmp TWSI ; Two-wire Serial Interface Handler

$024 jmp EXT_INT2 ; IRQ2 Handler

$026 jmp TIM0_COMP ; Timer0 Compare Handler

$028 jmp SPM_RDY ; Store Program Memory Ready Handler

;

$02A RESET: ldi r16,high(RAMEND) ; Main program start

$02B out SPH,r16 ; Set Stack Pointer to top of RAM

$02C ldi r16,low(RAMEND)

$02D out SPL,r16

$02E sei ; Enable interrupts

$02F <instr> xxx

...

Table 19. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset address Interrupt Vectors Start Address

1 0 $0000 $0002

1 1 $0000 Boot Reset Address + $0002

0 0 Boot Reset Address $0002

0 1 Boot Reset Address Boot Reset Address + $0002

47
2466R–AVR–06/08

ATmega16(L)

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the
IVSEL bit in the GICR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

$000 RESET: ldi r16,high(RAMEND) ; Main program start

$001 out SPH,r16 ; Set Stack Pointer to top of RAM

$002 ldi r16,low(RAMEND)

$003 out SPL,r16

$004 sei ; Enable interrupts

$005 <instr> xxx

;

.org $1C02

$1C02 jmp EXT_INT0 ; IRQ0 Handler

$1C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

$1C28 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $002

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

... ;

$028 jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org $1C00

$1C00 RESET: ldi r16,high(RAMEND) ; Main program start

$1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

$1C02 ldi r16,low(RAMEND)

$1C03 out SPL,r16

$1C04 sei ; Enable interrupts

$1C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL
bit in the GICR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $1C00

$1C00 jmp RESET ; Reset handler

$1C02 jmp EXT_INT0 ; IRQ0 Handler

$1C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

$1C28 jmp SPM_RDY ; Store Program Memory Ready Handler

;

$1C2A RESET: ldi r16,high(RAMEND) ; Main program start

$1C2B out SPH,r16 ; Set Stack Pointer to top of RAM

$1C2C ldi r16,low(RAMEND)

$1C2D out SPL,r16

$1C2E sei ; Enable interrupts

$1C2F <instr> xxx

48
2466R–AVR–06/08

ATmega16(L)

Moving Interrupts
Between Application
and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector table.

General Interrupt
Control Register –
GICR

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the interrupt vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support – Read-While-Write
Self-Programming” on page 246 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.
Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,

interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section “Boot Loader Support – Read-While-
Write Self-Programming” on page 246 for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See Code Example below

Bit 7 6 5 4 3 2 1 0

INT1 INT0 INT2 – – – IVSEL IVCE GICR

Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

49
2466R–AVR–06/08

ATmega16(L)

.

Assembly Code Example

Move_interrupts:

; Enable change of interrupt vectors

ldi r16, (1<<IVCE)

out GICR, r16

; Move interrupts to boot Flash section

ldi r16, (1<<IVSEL)

out GICR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of interrupt vectors */

GICR = (1<<IVCE);

/* Move interrupts to boot Flash section */

GICR = (1<<IVSEL);

}

50
2466R–AVR–06/08

ATmega16(L)

I/O Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both VCC and Ground as indicated in Figure 22. Refer to “Electrical Charac-
teristics” on page 291 for a complete list of parameters.

Figure 22. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. i.e., PORTB3
for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Registers and
bit locations are listed in “Register Description for I/O Ports” on page 66.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
In addition, the Pull-up Disable – PUD bit in SFIOR disables the pull-up function for all pins in all
ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page
50. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 55. Refer to the individual module sections for a full description of the alter-
nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

Ports as General
Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 23 shows a functional
description of one I/O-port pin, here generically called Pxn.

Cpin

Logic

Rpu

See Figure 23
"General Digital I/O" for

Details

Pxn

51
2466R–AVR–06/08

ATmega16(L)

Figure 23. General Digital I/O(1)

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP,
and PUD are common to all ports.

Configuring the Pin Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description for I/O Ports” on page 66, the DDxn bits are accessed at the DDRx I/O address, the
PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when a reset condition becomes
active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can be set to disable all
pull-ups in all ports.

clk

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

52
2466R–AVR–06/08

ATmega16(L)

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 20 summarizes the control signals for the pin value.

Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 23, the PINxn Register bit and the preceding latch consti-
tute a synchronizer. This is needed to avoid metastability if the physical pin changes value near
the edge of the internal clock, but it also introduces a delay. Figure 24 shows a timing diagram of
the synchronization when reading an externally applied pin value. The maximum and minimum
propagation delays are denoted tpd,max and tpd,min respectively.

Figure 24. Synchronization when Reading an Externally Applied Pin Value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As
indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.

Table 20. Port Pin Configurations

DDxn PORTxn
PUD

(in SFIOR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if ext. pulled
low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

SYSTEM CLK

INSTRUCTIONS

SYNC LATCH

PINxn

r17

in r17, PINx

0xFF0x00

tpd, max

XXXXXX

tpd, min

53
2466R–AVR–06/08

ATmega16(L)

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 25. The out instruction sets the “SYNC LATCH” signal at the positive edge of the
clock. In this case, the delay tpd through the synchronizer is one system clock period.

Figure 25. Synchronization when Reading a Software Assigned Pin Value

nop in r17, PINx

0xFF

0x00 0xFF

tpd

out PORTx, r16

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

54
2466R–AVR–06/08

ATmega16(L)

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable
and Sleep Modes

As shown in Figure 23, the digital input signal can be clamped to ground at the input of the
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, Standby mode, and Extended Standby mode to avoid
high power consumption if some input signals are left floating, or have an analog signal level
close to VCC/2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt
Request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by vari-
ous other alternate functions as described in “Alternate Port Functions” on page 55.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the External Inter-
rupt is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned sleep modes, as the clamping in these sleep modes produces the requested
logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example(1)

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...

55
2466R–AVR–06/08

ATmega16(L)

Unconnected pins If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

Alternate Port
Functions

Most port pins have alternate functions in addition to being General Digital I/Os. Figure 26
shows how the port pin control signals from the simplified Figure 23 can be overridden by alter-
nate functions. The overriding signals may not be present in all port pins, but the figure serves
as a generic description applicable to all port pins in the AVR microcontroller family.

Figure 26. Alternate Port Functions(1)

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP,
and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O

56
2466R–AVR–06/08

ATmega16(L)

Table 21 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 26 are not shown in the succeeding tables. The overriding signals are generated internally in
the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 21. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by
the PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when
PUOV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction
Override Enable

If this signal is set, the Output Driver Enable is
controlled by the DDOV signal. If this signal is cleared,
the Output driver is enabled by the DDxn Register bit.

DDOV Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled
when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE Port Value Override
Enable

If this signal is set and the Output Driver is enabled,
the port value is controlled by the PVOV signal. If
PVOE is cleared, and the Output Driver is enabled, the
port Value is controlled by the PORTxn Register bit.

PVOV Port Value Override
Value

If PVOE is set, the port value is set to PVOV,
regardless of the setting of the PORTxn Register bit.

DIEOE Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by
the DIEOV signal. If this signal is cleared, the Digital
Input Enable is determined by MCU-state (Normal
Mode, sleep modes).

DIEOV Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled
when DIEOV is set/cleared, regardless of the MCU
state (Normal Mode, sleep modes).

DI Digital Input This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the
schmitt trigger but before the synchronizer. Unless the
Digital Input is used as a clock source, the module with
the alternate function will use its own synchronizer.

AIO Analog Input/ output This is the Analog Input/output to/from alternate
functions. The signal is connected directly to the pad,
and can be used bi-directionally.

57
2466R–AVR–06/08

ATmega16(L)

Special Function I/O
Register – SFIOR

• Bit 2 – PUD: Pull-up disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 51 for more details about this feature.

Alternate Functions of
Port A

Port A has an alternate function as analog input for the ADC as shown in Table 22. If some Port
A pins are configured as outputs, it is essential that these do not switch when a conversion is in
progress. This might corrupt the result of the conversion.

Table 23 and Table 24 relate the alternate functions of Port A to the overriding signals shown in
Figure 26 on page 55.

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7 ADC7 (ADC input channel 7)

PA6 ADC6 (ADC input channel 6)

PA5 ADC5 (ADC input channel 5)

PA4 ADC4 (ADC input channel 4)

PA3 ADC3 (ADC input channel 3)

PA2 ADC2 (ADC input channel 2)

PA1 ADC1 (ADC input channel 1)

PA0 ADC0 (ADC input channel 0)

Table 23. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/ADC7 PA6/ ADC6 PA5/ADC5 PA4/ADC4

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC7 INPUT ADC6 INPUT ADC5 INPUT ADC4 INPUT

58
2466R–AVR–06/08

ATmega16(L)

Alternate Functions of
Port B

The Port B pins with alternate functions are shown in Table 25.

The alternate pin configuration is as follows:

• SCK – Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB7. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB7. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB7 bit.

• MISO – Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB6. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB6. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB6 bit.

Table 24. Overriding Signals for Alternate Functions in PA3..PA0

Signal Name PA3/ADC3 PA2/ ADC2 PA1/ADC1 PA0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 25. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 SCK (SPI Bus Serial Clock)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB4 SS (SPI Slave Select Input)

PB3
AIN1 (Analog Comparator Negative Input)
OC0 (Timer/Counter0 Output Compare Match Output)

PB2
AIN0 (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1 T1 (Timer/Counter1 External Counter Input)

PB0
T0 (Timer/Counter0 External Counter Input)

XCK (USART External Clock Input/Output)

59
2466R–AVR–06/08

ATmega16(L)

• MOSI – Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB5. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

• SS – Port B, Bit 4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input
regardless of the setting of DDB4. As a Slave, the SPI is activated when this pin is driven low.
When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB4. When
the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

• AIN1/OC0 – Port B, Bit 3

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog
comparator.

OC0, Output Compare Match output: The PB3 pin can serve as an external output for the
Timer/Counter0 Compare Match. The PB3 pin has to be configured as an output (DDB3 set
(one)) to serve this function. The OC0 pin is also the output pin for the PWM mode timer
function.

• AIN0/INT2 – Port B, Bit 2

AIN0, Analog Comparator Positive input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt source to the
MCU.

• T1 – Port B, Bit 1

T1, Timer/Counter1 Counter Source.

• T0/XCK – Port B, Bit 0

T0, Timer/Counter0 Counter Source.

XCK, USART External Clock. The Data Direction Register (DDB0) controls whether the clock is
output (DDB0 set) or input (DDB0 cleared). The XCK pin is active only when the USART oper-
ates in Synchronous mode.

Table 26 and Table 27 relate the alternate functions of Port B to the overriding signals shown in
Figure 26 on page 55. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal,
while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

60
2466R–AVR–06/08

ATmega16(L)

Table 26. Overriding Signals for Alternate Functions in PB7..PB4

Signal
Name PB7/SCK PB6/MISO PB5/MOSI PB4/SS

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB7 • PUD PORTB6 • PUD PORTB5 • PUD PORTB4 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SCK OUTPUT SPI SLAVE OUTPUT SPI MSTR OUTPUT 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT SPI SS

AIO – – – –

Table 27. Overriding Signals for Alternate Functions in PB3..PB0

Signal
Name PB3/OC0/AIN1 PB2/INT2/AIN0 PB1/T1 PB0/T0/XCK

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC0 ENABLE 0 0 UMSEL

PVOV OC0 0 0 XCK OUTPUT

DIEOE 0 INT2 ENABLE 0 0

DIEOV 0 1 0 0

DI – INT2 INPUT T1 INPUT XCK INPUT/T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

61
2466R–AVR–06/08

ATmega16(L)

Alternate Functions of
Port C

The Port C pins with alternate functions are shown in Table 28. If the JTAG interface is enabled,
the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset
occurs.

The alternate pin configuration is as follows:

• TOSC2 – Port C, Bit 7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asynchronous
clocking of Timer/Counter2, pin PC7 is disconnected from the port, and becomes the inverting
output of the Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this pin, and
the pin can not be used as an I/O pin.

• TOSC1 – Port C, Bit 6

TOSC1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asynchronous
clocking of Timer/Counter2, pin PC6 is disconnected from the port, and becomes the input of the
inverting Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this pin, and the
pin can not be used as an I/O pin.

• TDI – Port C, Bit 5

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TDO – Port C, Bit 4

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an I/O pin.

The TD0 pin is tri-stated unless TAP states that shifts out data are entered.

• TMS – Port C, Bit 3

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TCK – Port C, Bit 2

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is
enabled, this pin can not be used as an I/O pin.

Table 28. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7 TOSC2 (Timer Oscillator Pin 2)

PC6 TOSC1 (Timer Oscillator Pin 1)

PC5 TDI (JTAG Test Data In)

PC4 TDO (JTAG Test Data Out)

PC3 TMS (JTAG Test Mode Select)

PC2 TCK (JTAG Test Clock)

PC1 SDA (Two-wire Serial Bus Data Input/Output Line)

PC0 SCL (Two-wire Serial Bus Clock Line)

62
2466R–AVR–06/08

ATmega16(L)

• SDA – Port C, Bit 1

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PC1 is disconnected from the port and becomes the Serial Data
I/O pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation. When this pin is used by the Two-wire Serial Interface, the pull-up can
still be controlled by the PORTC1 bit.

• SCL – Port C, Bit 0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PC0 is disconnected from the port and becomes the Serial Clock
I/O pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation. When this pin is used by the Two-wire Serial Interface, the pull-up can
still be controlled by the PORTC0 bit.

Table 29 and Table 30 relate the alternate functions of Port C to the overriding signals shown in
Figure 26 on page 55.

Table 29. Overriding Signals for Alternate Functions in PC7..PC4

Signal
Name PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO

PUOE AS2 AS2 JTAGEN JTAGEN

PUOV 0 0 1 0

DDOE AS2 AS2 JTAGEN JTAGEN

DDOV 0 0 0 SHIFT_IR + SHIFT_DR

PVOE 0 0 0 JTAGEN

PVOV 0 0 0 TDO

DIEOE AS2 AS2 JTAGEN JTAGEN

DIEOV 0 0 0 0

DI – – – –

AIO T/C2 OSC OUTPUT T/C2 OSC INPUT TDI –

63
2466R–AVR–06/08

ATmega16(L)

Note: 1. When enabled, the Two-wire Serial Interface enables slew-rate controls on the output pins
PC0 and PC1. This is not shown in the figure. In addition, spike filters are connected between
the AIO outputs shown in the port figure and the digital logic of the TWI module.

Alternate Functions of
Port D

The Port D pins with alternate functions are shown in Table 31.

The alternate pin configuration is as follows:

• OC2 – Port D, Bit 7

OC2, Timer/Counter2 Output Compare Match output: The PD7 pin can serve as an external out-
put for the Timer/Counter2 Output Compare. The pin has to be configured as an output (DDD7
set (one)) to serve this function. The OC2 pin is also the output pin for the PWM mode timer
function.

• ICP1 – Port D, Bit 6

ICP1 – Input Capture Pin: The PD6 pin can act as an Input Capture pin for Timer/Counter1.

Table 30. Overriding Signals for Alternate Functions in PC3..PC0(1)

Signal
Name PC3/TMS PC2/TCK PC1/SDA PC0/SCL

PUOE JTAGEN JTAGEN TWEN TWEN

PUOV 1 1 PORTC1 • PUD PORTC0 • PUD

DDOE JTAGEN JTAGEN TWEN TWEN

DDOV 0 0 SDA_OUT SCL_OUT

PVOE 0 0 TWEN TWEN

PVOV 0 0 0 0

DIEOE JTAGEN JTAGEN 0 0

DIEOV 0 0 0 0

DI – – – –

AIO TMS TCK SDA INPUT SCL INPUT

Table 31. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 OC2 (Timer/Counter2 Output Compare Match Output)

PD6 ICP1 (Timer/Counter1 Input Capture Pin)

PD5 OC1A (Timer/Counter1 Output Compare A Match Output)

PD4 OC1B (Timer/Counter1 Output Compare B Match Output)

PD3 INT1 (External Interrupt 1 Input)

PD2 INT0 (External Interrupt 0 Input)

PD1 TXD (USART Output Pin)

PD0 RXD (USART Input Pin)

64
2466R–AVR–06/08

ATmega16(L)

• OC1A – Port D, Bit 5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDD5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

• OC1B – Port D, Bit 4

OC1B, Output Compare Match B output: The PD4 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDD4 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

• INT1 – Port D, Bit 3

INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt source.

• INT0 – Port D, Bit 2

INT0, External Interrupt Source 0: The PD2 pin can serve as an external interrupt source.

• TXD – Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled,
this pin is configured as an output regardless of the value of DDD1.

• RXD – Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this
pin is configured as an input regardless of the value of DDD0. When the USART forces this pin
to be an input, the pull-up can still be controlled by the PORTD0 bit.

Table 32 and Table 33 relate the alternate functions of Port D to the overriding signals shown in
Figure 26 on page 55.

Table 32. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/OC2 PD6 /ICP1 PD5/OC1A PD4/OC1B

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE

PVOV OC2 0 OC1A OC1B

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – ICP1 INPUT – –

AIO – – – –

65
2466R–AVR–06/08

ATmega16(L)

Table 33. Overriding Signals for Alternate Functions in PD3..PD0

Signal Name PD3/INT1 PD2/INT0 PD1/TXD PD0/RXD

PUOE 0 0 TXEN RXEN

PUOV 0 0 0 PORTD0 • PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE 0 0 TXEN 0

PVOV 0 0 TXD 0

DIEOE INT1 ENABLE INT0 ENABLE 0 0

DIEOV 1 1 0 0

DI INT1 INPUT INT0 INPUT – RXD

AIO – – – –

66
2466R–AVR–06/08

ATmega16(L)

Register
Description for I/O
Ports

Port A Data Register –
PORTA

Port A Data Direction
Register – DDRA

Port A Input Pins
Address – PINA

Port B Data Register –
PORTB

Port B Data Direction
Register – DDRB

Port B Input Pins
Address – PINB

Bit 7 6 5 4 3 2 1 0

PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINA7 PINA6 PINA5 PINA4 PI NA3 PINA2 PINA1 PINA0 PINA

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PI NB3 PINB2 PINB1 PINB0 PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

67
2466R–AVR–06/08

ATmega16(L)

Port C Data Register –
PORTC

Port C Data Direction
Register – DDRC

Port C Input Pins
Address – PINC

Port D Data Register –
PORTD

Port D Data Direction
Register – DDRD

Port D Input Pins
Address – PIND

Bit 7 6 5 4 3 2 1 0

PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

68
2466R–AVR–06/08

ATmega16(L)

External
Interrupts

The External Interrupts are triggered by the INT0, INT1, and INT2 pins. Observe that, if enabled,
the interrupts will trigger even if the INT0..2 pins are configured as outputs. This feature provides
a way of generating a software interrupt. The external interrupts can be triggered by a falling or
rising edge or a low level (INT2 is only an edge triggered interrupt). This is set up as indicated in
the specification for the MCU Control Register – MCUCR – and MCU Control and Status Regis-
ter – MCUCSR. When the external interrupt is enabled and is configured as level triggered (only
INT0/INT1), the interrupt will trigger as long as the pin is held low. Note that recognition of falling
or rising edge interrupts on INT0 and INT1 requires the presence of an I/O clock, described in
“Clock Systems and their Distribution” on page 24. Low level interrupts on INT0/INT1 and the
edge interrupt on INT2 are detected asynchronously. This implies that these interrupts can be
used for waking the part also from sleep modes other than Idle mode. The I/O clock is halted in
all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. This makes the MCU less sensitive to
noise. The changed level is sampled twice by the Watchdog Oscillator clock. The period of the
Watchdog Oscillator is 1 µs (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscilla-
tor is voltage dependent as shown in “Electrical Characteristics” on page 291. The MCU will
wake up if the input has the required level during this sampling or if it is held until the end of the
start-up time. The start-up time is defined by the SUT Fuses as described in “System Clock and
Clock Options” on page 24. If the level is sampled twice by the Watchdog Oscillator clock but
disappears before the end of the start-up time, the MCU will still wake up, but no interrupt will be
generated. The required level must be held long enough for the MCU to complete the wake up to
trigger the level interrupt.

MCU Control Register
– MCUCR

The MCU Control Register contains control bits for interrupt sense control and general MCU
functions.

• Bit 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-bit and the corre-
sponding interrupt mask in the GICR are set. The level and edges on the external INT1 pin that
activate the interrupt are defined in Table 34. The value on the INT1 pin is sampled before
detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock
period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If
low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 34. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

69
2466R–AVR–06/08

ATmega16(L)

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in Table 35. The value on the INT0 pin is sampled before detecting edges.
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.

MCU Control and
Status Register –
MCUCSR

• Bit 6 – ISC2: Interrupt Sense Control 2

The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG I-bit and
the corresponding interrupt mask in GICR are set. If ISC2 is written to zero, a falling edge on
INT2 activates the interrupt. If ISC2 is written to one, a rising edge on INT2 activates the inter-
rupt. Edges on INT2 are registered asynchronously. Pulses on INT2 wider than the minimum
pulse width given in Table 36 will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. When changing the ISC2 bit, an interrupt can occur. Therefore, it is rec-
ommended to first disable INT2 by clearing its Interrupt Enable bit in the GICR Register. Then,
the ISC2 bit can be changed. Finally, the INT2 Interrupt Flag should be cleared by writing a logi-
cal one to its Interrupt Flag bit (INTF2) in the GIFR Register before the interrupt is re-enabled.

General Interrupt
Control Register –
GICR

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU
General Control Register (MCUCR) define whether the External Interrupt is activated on rising

Table 35. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

Table 36. Asynchronous External Interrupt Characteristics

Symbol Parameter Condi tion Min Typ Max Units

tINT
Minimum pulse width for
asynchronous external interrupt

50 ns

Bit 7 6 5 4 3 2 1 0

INT1 INT0 INT2 – – – IVSEL IVCE GICR

Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

70
2466R–AVR–06/08

ATmega16(L)

and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an interrupt
request even if INT1 is configured as an output. The corresponding interrupt of External Interrupt
Request 1 is executed from the INT1 interrupt Vector.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU
General Control Register (MCUCR) define whether the External Interrupt is activated on rising
and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt
request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt
Request 0 is executed from the INT0 interrupt vector.

• Bit 5 – INT2: External Interrupt Request 2 Enable

When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control2 bit (ISC2) in the MCU Control and
Status Register (MCUCSR) defines whether the External Interrupt is activated on rising or falling
edge of the INT2 pin. Activity on the pin will cause an interrupt request even if INT2 is configured
as an output. The corresponding interrupt of External Interrupt Request 2 is executed from the
INT2 Interrupt Vector.

General Interrupt Flag
Register – GIFR

• Bit 7 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set
(one). If the I-bit in SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corre-
sponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 6 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in GICR are set (one), the MCU will jump to the corre-
sponding interrupt vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

• Bit 5 – INTF2: External Interrupt Flag 2

When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one). If the I-
bit in SREG and the INT2 bit in GICR are set (one), the MCU will jump to the corresponding
Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag
can be cleared by writing a logical one to it. Note that when entering some sleep modes with the
INT2 interrupt disabled, the input buffer on this pin will be disabled. This may cause a logic
change in internal signals which will set the INTF2 Flag. See “Digital Input Enable and Sleep
Modes” on page 54 for more information.

Bit 7 6 5 4 3 2 1 0

INTF1 INTF0 INTF2 – – – – – GIFR

Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

71
2466R–AVR–06/08

ATmega16(L)

8-bit
Timer/Counter0
with PWM

Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module. The
main features are:
• Single Compare Unit Counter
• Clear Timer on Compar e Match (Auto Reload)
• Glitch-free, Phase Correct Pu lse Width Modulator (PWM)
• Frequency Generator
• External Event Counter
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0)

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 27. For the actual place-
ment of I/O pins, refer to “Pinout ATmega16” on page 2. CPU accessible I/O Registers, including
I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are
listed in the “8-bit Timer/Counter Register Description” on page 83.

Figure 27. 8-bit Timer/Counter Block Diagram

Registers The Timer/Counter (TCNT0) and Output Compare Register (OCR0) are 8-bit registers. Interrupt
request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag
Register (TIFR). All interrupts are individually masked with the Timer Interrupt Mask Register
(TIMSK). TIFR and TIMSK are not shown in the figure since these registers are shared by other
timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Register (OCR0) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the waveform generator to generate
a PWM or variable frequency output on the Output Compare Pin (OC0). See “Output Compare

Timer/Counter

D
AT

A
B

U
S

=

TCNTn

Waveform
Generation

OCn

= 0

Control Logic

= 0xFF

BOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCRn

TCCRn

Clock Select

Tn
Edge

Detector

(From Prescaler)

clkTn

TOP

OCn
(Int.Req.)

72
2466R–AVR–06/08

ATmega16(L)

Unit” on page 73. for details. The compare match event will also set the Compare Flag (OCF0)
which can be used to generate an output compare interrupt request.

Definitions Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. However, when using the register or bit
defines in a program, the precise form must be used i.e., TCNT0 for accessing Timer/Counter0
counter value and so on.

The definitions in Table 37 are also used extensively throughout the document.

Timer/Counter
Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the clock select logic which is controlled by the clock select (CS02:0) bits located
in the Timer/Counter Control Register (TCCR0). For details on clock sources and prescaler, see
“Timer/Counter0 and Timer/Counter1 Prescalers” on page 87.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
28 shows a block diagram of the counter and its surroundings.

Figure 28. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clk Tn Timer/Counter clock, referred to as clkT0 in the following.

TOP Signalize that TCNT0 has reached maximum value.

BOTTOM Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of

Table 37. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR0 Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int. Req.)

Clock Select

TOP

Tn
Edge

Detector

(From Prescaler)

clkTn

BOTTOM

direction

clear

73
2466R–AVR–06/08

ATmega16(L)

whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in
the Timer/Counter Control Register (TCCR0). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC0. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 76.

The Timer/Counter Overflow (TOV0) Flag is set according to the mode of operation selected by
the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.

Output Compare
Unit

The 8-bit comparator continuously compares TCNT0 with the Output Compare Register
(OCR0). Whenever TCNT0 equals OCR0, the comparator signals a match. A match will set the
Output Compare Flag (OCF0) at the next timer clock cycle. If enabled (OCIE0 = 1 and Global
Interrupt Flag in SREG is set), the Output Compare Flag generates an output compare interrupt.
The OCF0 Flag is automatically cleared when the interrupt is executed. Alternatively, the OCF0
Flag can be cleared by software by writing a logical one to its I/O bit location. The waveform gen-
erator uses the match signal to generate an output according to operating mode set by the
WGM01:0 bits and Compare Output mode (COM01:0) bits. The max and bottom signals are
used by the waveform generator for handling the special cases of the extreme values in some
modes of operation (See “Modes of Operation” on page 76.).

Figure 29 shows a block diagram of the output compare unit.

Figure 29. Output Compare Unit, Block Diagram

The OCR0 Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCR0 Compare Register
to either top or bottom of the counting sequence. The synchronization prevents the occurrence
of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

OCFn (Int.Req.)

= (8-bit Comparator)

OCRn

OCn

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMn1:0

bottom

74
2466R–AVR–06/08

ATmega16(L)

The OCR0 Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR0 Buffer Register, and if double buffering is disabled
the CPU will access the OCR0 directly.

Force Output
Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC0) bit. Forcing compare match will not set the
OCF0 Flag or reload/clear the timer, but the OC0 pin will be updated as if a real compare match
had occurred (the COM01:0 bits settings define whether the OC0 pin is set, cleared or toggled).

Compare Match
Blocking by TCNT0
Write

All CPU write operations to the TCNT0 Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0 to be initialized
to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is
enabled.

Using the Output
Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT0 when using the output compare unit, inde-
pendently of whether the Timer/Counter is running or not. If the value written to TCNT0 equals
the OCR0 value, the compare match will be missed, resulting in incorrect waveform generation.
Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is downcounting.

The setup of the OC0 should be performed before setting the Data Direction Register for the port
pin to output. The easiest way of setting the OC0 value is to use the Force Output Compare
(FOC0) strobe bits in Normal mode. The OC0 Register keeps its value even when changing
between waveform generation modes.

Be aware that the COM01:0 bits are not double buffered together with the compare value.
Changing the COM01:0 bits will take effect immediately.

Compare Match
Output Unit

The Compare Output mode (COM01:0) bits have two functions. The Waveform Generator uses
the COM01:0 bits for defining the Output Compare (OC0) state at the next compare match. Also,
the COM01:0 bits control the OC0 pin output source. Figure 30 shows a simplified schematic of
the logic affected by the COM01:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the fig-
ure are shown in bold. Only the parts of the general I/O port Control Registers (DDR and PORT)
that are affected by the COM01:0 bits are shown. When referring to the OC0 state, the reference
is for the internal OC0 Register, not the OC0 pin. If a System Reset occur, the OC0 Register is
reset to “0”.

75
2466R–AVR–06/08

ATmega16(L)

Figure 30. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0) from the Waveform
Generator if either of the COM01:0 bits are set. However, the OC0 pin direction (input or output)
is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Regis-
ter bit for the OC0 pin (DDR_OC0) must be set as output before the OC0 value is visible on the
pin. The port override function is independent of the Waveform Generation mode.

The design of the output compare pin logic allows initialization of the OC0 state before the out-
put is enabled. Note that some COM01:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 83.

Compare Output Mode
and Waveform
Generation

The Waveform Generator uses the COM01:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM01:0 = 0 tells the waveform generator that no action on the OC0
Register is to be performed on the next compare match. For compare output actions in the non-
PWM modes refer to Table 39 on page 84. For fast PWM mode, refer to Table 40 on page 84,
and for phase correct PWM refer to Table 41 on page 84.

A change of the COM01:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC0 strobe bits.

PORT

DDR

D Q

D Q

OCn
PinOCn

D Q
Waveform
Generator

COMn1

COMn0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O

76
2466R–AVR–06/08

ATmega16(L)

Modes of
Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM01:0) and Compare Output
mode (COM01:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM01:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM01:0 bits control whether the output should be set, cleared, or toggled at a compare
match (See “Compare Match Output Unit” on page 74.).

For detailed timing information refer to Figure 34, Figure 35, Figure 36 and Figure 37 in
“Timer/Counter Timing Diagrams” on page 81.

Normal Mode The simplest mode of operation is the normal mode (WGM01:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same
timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV0 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the normal mode, a new counter value can be written
anytime.

The output compare unit can be used to generate interrupts at some given time. Using the out-
put compare to generate waveforms in Normal mode is not recommended, since this will occupy
too much of the CPU time.

Clear Timer on
Compare Match (CTC)
Mode

In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0 Register is used to manip-
ulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value
(TCNT0) matches the OCR0. The OCR0 defines the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also sim-
plifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 31. The counter value (TCNT0)
increases until a compare match occurs between TCNT0 and OCR0, and then counter (TCNT0)
is cleared.

Figure 31. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0 Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing TOP to a value close to BOTTOM when the counter is running
with none or a low prescaler value must be done with care since the CTC mode does not have

TCNTn

OCn
(Toggle)

OCn Interrupt Flag Set

1 4Period 2 3

(COMn1:0 = 1)

77
2466R–AVR–06/08

ATmega16(L)

the double buffering feature. If the new value written to OCR0 is lower than the current value of
TCNT0, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFF) and wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC0 output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM01:0 = 1). The OC0 value will not be visible on the port pin unless the data direction for the
pin is set to output. The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2
when OCR0 is set to zero (0x00). The waveform frequency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC0) is cleared on the compare
match between TCNT0 and OCR0, and set at BOTTOM. In inverting Compare Output mode, the
output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 32. The TCNT0 value is in the timing diagram shown as a histo-
gram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare
matches between OCR0 and TCNT0.

Figure 32. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

fOCn

fclk_I/O

2 N 1 OCRn+()⋅ ⋅---=

TCNTn

OCRn Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Interrupt Flag Set

4 5 6 7

78
2466R–AVR–06/08

ATmega16(L)

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0 pin. Set-
ting the COM01:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM01:0 to 3 (See Table 40 on page 84). The actual OC0 value will
only be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by setting (or clearing) the OC0 Register at the compare match between
OCR0 and TCNT0, and clearing (or setting) the OC0 Register at the timer clock cycle the coun-
ter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0 Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0 is set equal to BOTTOM, the output will be
a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0 equal to MAX will result in a
constantly high or low output (depending on the polarity of the output set by the COM01:0 bits.)

fOCnPWM

fclk_I/O

N 256⋅------------------=

79
2466R–AVR–06/08

ATmega16(L)

Phase Correct PWM
Mode

The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC0) is cleared on the compare match
between TCNT0 and OCR0 while upcounting, and set on the compare match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 33.
The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT0 slopes represent compare matches between OCR0 and TCNT0.

Figure 33. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0 pin. Setting the COM01:0 bits to 2 will produce a non-inverted PWM. An inverted PWM out-
put can be generated by setting the COM01:0 to 3 (see Table 41 on page 84). The actual OC0
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC0 Register at the compare match
between OCR0 and TCNT0 when the counter increments, and setting (or clearing) the OC0
Register at compare match between OCR0 and TCNT0 when the counter decrements. The

TOVn Interrupt Flag Set

OCn Interrupt Flag Set

1 2 3

TCNTn

Period

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Update

80
2466R–AVR–06/08

ATmega16(L)

PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0 Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0 is set equal to BOTTOM, the out-
put will be continuously low and if set equal to MAX the output will be continuously high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of Period 2 in Figure 33 OCn has a transition from high to low even though there
is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM.
There are two cases that give a transition without Compare Match:

• OCR0A changes its value from MAX, like in Figure 33. When the OCR0A value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must be correspond to the result of an
up-counting Compare Match.

• The Timer starts counting from a value higher than the one in OCR0A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the
way up.

fOCnPCPWM

fclk_I/O

N 510⋅------------------=

81
2466R–AVR–06/08

ATmega16(L)

Timer/Counter
Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 34 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 34. Timer/Counter Timing Diagram, no Prescaling

Figure 35 shows the same timing data, but with the prescaler enabled.

Figure 35. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 36 shows the setting of OCF0 in all modes except CTC mode.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

82
2466R–AVR–06/08

ATmega16(L)

Figure 36. Timer/Counter Timing Diagram, Setting of OCF0, with Prescaler (fclk_I/O/8)

Figure 37 shows the setting of OCF0 and the clearing of TCNT0 in CTC mode.

Figure 37. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Pres-
caler (fclk_I/O/8)

OCFn

OCRn

TCNTn

OCRn Value

OCRn - 1 OCRn OCRn + 1 OCRn + 2

clkI/O

clkTn
(clkI/O/8)

OCFn

OCRn

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

83
2466R–AVR–06/08

ATmega16(L)

8-bit
Timer/Counter
Register
Description

Timer/Counter Control
Register – TCCR0

• Bit 7 – FOC0: Force Output Compare

The FOC0 bit is only active when the WGM00 bit specifies a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCR0 is written
when operating in PWM mode. When writing a logical one to the FOC0 bit, an immediate com-
pare match is forced on the Waveform Generation unit. The OC0 output is changed according to
its COM01:0 bits setting. Note that the FOC0 bit is implemented as a strobe. Therefore it is the
value present in the COM01:0 bits that determines the effect of the forced compare.

A FOC0 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0 as TOP.

The FOC0 bit is always read as zero.

• Bit 3, 6 – WGM01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of Waveform Generation to be used. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare Match (CTC)
mode, and two types of Pulse Width Modulation (PWM) modes. See Table 38 and “Modes of
Operation” on page 76.

Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

• Bit 5:4 – COM01:0: Compare Match Output Mode

These bits control the Output Compare pin (OC0) behavior. If one or both of the COM01:0 bits
are set, the OC0 output overrides the normal port functionality of the I/O pin it is connected to.
However, note that the Data Direction Register (DDR) bit corresponding to the OC0 pin must be
set in order to enable the output driver.

Bit 7 6 5 4 3 2 1 0

FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 TCCR0

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 38. Waveform Generation Mode Bit Description(1)

Mode
WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter Mode
of Operation TOP

Update of
OCR0

TOV0 Flag
Set-on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0 Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX

84
2466R–AVR–06/08

ATmega16(L)

When OC0 is connected to the pin, the function of the COM01:0 bits depends on the WGM01:0
bit setting. Table 39 shows the COM01:0 bit functionality when the WGM01:0 bits are set to a
normal or CTC mode (non-PWM).

Table 40 shows the COM01:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0 equals TOP and COM01 is set. In this case, the compare
match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 77 for
more details.

Table 41 shows the COM01:0 bit functionality when the WGM01:0 bits are set to phase correct
PWM mode.

Note: 1. A special case occurs when OCR0 equals TOP and COM01 is set. In this case, the compare
match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page
79 for more details.

Table 39. Compare Output Mode, non-PWM Mode

COM01 COM00 Description

0 0 Normal port operation, OC0 disconnected.

0 1 Toggle OC0 on compare match

1 0 Clear OC0 on compare match

1 1 Set OC0 on compare match

Table 40. Compare Output Mode, Fast PWM Mode(1)

COM01 COM00 Description

0 0 Normal port operation, OC0 disconnected.

0 1 Reserved

1 0 Clear OC0 on compare match, set OC0 at BOTTOM,
(non-inverting mode)

1 1 Set OC0 on compare match, clear OC0 at BOTTOM,
(inverting mode)

Table 41. Compare Output Mode, Phase Correct PWM Mode(1)

COM01 COM00 Description

0 0 Normal port operation, OC0 disconnected.

0 1 Reserved

1 0 Clear OC0 on compare match when up-counting. Set OC0 on compare
match when downcounting.

1 1 Set OC0 on compare match when up-counting. Clear OC0 on compare
match when downcounting.

85
2466R–AVR–06/08

ATmega16(L)

• Bit 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

Timer/Counter
Register – TCNT0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a compare match between TCNT0 and the OCR0 Register.

Output Compare
Register – OCR0

The Output Compare Register contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an output compare interrupt, or to
generate a waveform output on the OC0 pin.

Timer/Counter
Interrupt Mask
Register – TIMSK

• Bit 1 – OCIE0: Timer/Counter0 Output Compare Match Interrupt Enable

When the OCIE0 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match interrupt is enabled. The corresponding interrupt is executed if
a compare match in Timer/Counter0 occurs, i.e., when the OCF0 bit is set in the Timer/Counter
Interrupt Flag Register – TIFR.

Table 42. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR0[7:0] OCR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

86
2466R–AVR–06/08

ATmega16(L)

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter Interrupt
Flag Register – TIFR.

Timer/Counter
Interrupt Flag Register
– TIFR

• Bit 1 – OCF0: Output Compare Flag 0

The OCF0 bit is set (one) when a compare match occurs between the Timer/Counter0 and the
data in OCR0 – Output Compare Register0. OCF0 is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCF0 is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0 (Timer/Counter0 Compare Match Interrupt Enable), and
OCF0 are set (one), the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Inter-
rupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed. In
phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at
$00.

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

87
2466R–AVR–06/08

ATmega16(L)

Timer/Counter0
and
Timer/Counter1
Prescalers

Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters
can have different prescaler settings. The description below applies to both Timer/Counter1 and
Timer/Counter0.

Internal Clock Source The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or
fCLK_I/O/1024.

Prescaler Reset The prescaler is free running, i.e., operates independently of the clock select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

External Clock Source An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 38
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 38. T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clkI/O

88
2466R–AVR–06/08

ATmega16(L)

sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 39. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 38.

Special Function IO
Register – SFIOR

• Bit 0 – PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is written to one, the Timer/Counter1 and Timer/Counter0 prescaler will be reset.
The bit will be cleared by hardware after the operation is performed. Writing a zero to this bit will
have no effect. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a
reset of this prescaler will affect both timers. This bit will always be read as zero.

PSR10

Clear

clk T1 clk T0

T1

T0

clkI/O

Synchronization

Synchronization

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

89
2466R–AVR–06/08

ATmega16(L)

16-bit
Timer/Counter1

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:
• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two Independent Output Compare Units
• Double Buffered Out put Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compar e Match (Auto Reload)
• Glitch-free, Phase Correct Pu lse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four Independent Interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

Overview Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the output compare unit.
However, when using the register or bit defines in a program, the precise form must be used
(i.e., TCNT1 for accessing Timer/Counter1 counter value and so on).

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 40. For the actual
placement of I/O pins, refer to Figure 1 on page 2. CPU accessible I/O Registers, including I/O
bits and I/O pins, are shown in bold. The device specific I/O Register and bit locations are listed
in the “16-bit Timer/Counter Register Description” on page 110.

90
2466R–AVR–06/08

ATmega16(L)

Figure 40. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, Table 25 on page 58, and Table 31 on page 63 for
Timer/Counter1 pin placement and description.

Registers The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 92. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible
in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since these regis-
ters are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the clock select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See “Out-
put Compare Units” on page 98. The compare match event will also set the Compare Match
Flag (OCF1A/B) which can be used to generate an output compare interrupt request.

Clock Select

Timer/Counter
D

AT
A

B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn

91
2466R–AVR–06/08

ATmega16(L)

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture Pin (ICP1) or on the Analog Comparator pins (See
“Analog Comparator” on page 201.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

Definitions The following definitions are used extensively throughout the document:

Compatibility The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit
AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version
regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt
Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.

• Interrupt Vectors.

The following control bits have changed name, but have same functionality and register location:

• PWM10 is changed to WGM10.

• PWM11 is changed to WGM11.

• CTC1 is changed to WGM12.

The following bits are added to the 16-bit Timer/Counter Control Registers:

• FOC1A and FOC1B are added to TCCR1A.

• WGM13 is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

Table 43. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be one of the fixed values:
0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1 Regis-
ter. The assignment is dependent of the mode of operation.

92
2466R–AVR–06/08

ATmega16(L)

Accessing 16-bit
Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the High byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the Low byte triggers the 16-bit read or write operation. When the Low byte of a
16-bit register is written by the CPU, the High byte stored in the temporary register, and the Low
byte written are both copied into the 16-bit register in the same clock cycle. When the Low byte
of a 16-bit register is read by the CPU, the High byte of the 16-bit register is copied into the tem-
porary register in the same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the
Low byte must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

Assembly Code Example(1)

...

; Set TCNT1 to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17

out TCNT1L,r16

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

...

C Code Example(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */

TCNT1 = 0x1FF;

/* Read TCNT1 into i */

i = TCNT1;

...

93
2466R–AVR–06/08

ATmega16(L)

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */

i = TCNT1;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}

94
2466R–AVR–06/08

ATmega16(L)

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See “About Code Examples” on page 7.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNT1.

Reusing the
Temporary High Byte
Register

If writing to more than one 16-bit register where the High byte is the same for all registers writ-
ten, then the High byte only needs to be written once. However, note that the same rule of
atomic operation described previously also applies in this case.

Timer/Counter
Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits
located in the Timer/Counter Control Register B (TCCR1B). For details on clock sources and
prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 87.

Assembly Code Example(1)

TIM16_WriteTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16

out TCNT1H,r17

out TCNT1L,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1 (unsigned int i)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */

TCNT1 = i;

/* Restore global interrupt flag */

SREG = sreg;

}

95
2466R–AVR–06/08

ATmega16(L)

Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 41 shows a block diagram of the counter and its surroundings.

Figure 41. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clk T1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower 8
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the High byte temporary register
(TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read,
and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data
bus. It is important to notice that there are special cases of writing to the TCNT1 Register when
the counter is counting that will give unpredictable results. The special cases are described in
the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 101.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clkTn

96
2466R–AVR–06/08

ATmega16(L)

Input Capture Unit The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the Analog Comparator unit.
The time-stamps can then be used to calculate frequency, duty-cycle, and other features of the
signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 42. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 42. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (TICIE1 =
1), the Input Capture Flag generates an Input Capture Interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the Low
byte (ICR1L) and then the High byte (ICR1H). When the Low byte is read the High byte is copied
into the High byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the High byte must be written to the ICR1H I/O loca-
tion before the Low byte is written to ICR1L.

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*

97
2466R–AVR–06/08

ATmega16(L)

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 92.

Input Capture Pin
Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 38 on page 87). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a wave-
form generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

Noise Canceler The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

Using the Input
Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture Interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture Interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

98
2466R–AVR–06/08

ATmega16(L)

Output Compare
Units

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-
pare Flag generates an output compare interrupt. The OCF1x Flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of Operation” on page 101.)

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 43 shows a block diagram of the output compare unit. The small “n” in the register and bit
names indicates the device number (n = 1 for Timer/Counter1), and the “x” indicates output com-
pare unit (A/B). The elements of the block diagram that are not directly a part of the output
compare unit are gray shaded.

Figure 43. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCR1x Compare
Register to either TOP or BOTTOM of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the High byte

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM

99
2466R–AVR–06/08

ATmega16(L)

temporary register (TEMP). However, it is a good practice to read the Low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The High byte (OCR1xH) has to be
written first. When the High byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the Low byte (OCR1xL) is written to the lower eight
bits, the High byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Com-
pare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 92.

Force Output
Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM1x1:0 bits settings define whether the OC1x pin is set, cleared or
toggled).

Compare Match
Blocking by TCNT1
Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output
Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the output compare
units, independent of whether the Timer/Counter is running or not. If the value written to TCNT1
equals the OCR1x value, the compare match will be missed, resulting in incorrect waveform
generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly,
do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the force output compare
(FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when changing
between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.

100
2466R–AVR–06/08

ATmega16(L)

Compare Match
Output Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses
the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.
Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 44 shows a simplified
schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the
OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a System Reset
occur, the OC1x Register is reset to “0”.

Figure 44. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 44, Table 45 and Table 46 for details.

The design of the output compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See “16-bit Timer/Counter Register Description” on page 110.

The COM1x1:0 bits have no effect on the Input Capture unit.

Compare Output Mode
and Waveform
Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the
OC1x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 44 on page 110. For fast PWM mode refer to Table 45 on page
111, and for phase correct and phase and frequency correct PWM refer to Table 46 on page
111.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC1x strobe bits.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
B

U
S

FOCnx

clkI/O

101
2466R–AVR–06/08

ATmega16(L)

Modes of
Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is
defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Output
mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM1x1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM1x1:0 bits control whether the output should be set, cleared or toggle at a compare
match (See “Compare Match Output Unit” on page 100.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 108.

Normal Mode The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the out-
put compare to generate waveforms in Normal mode is not recommended, since this will occupy
too much of the CPU time.

Clear Timer on
Compare Match (CTC)
Mode

In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =
12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 45. The counter value (TCNT1)
increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)
is cleared.

Figure 45. CTC Mode, Timing Diagram

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)

102
2466R–AVR–06/08

ATmega16(L)

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the compare output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5,6,7,14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or
OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the max-
imum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 =
14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 46. The figure shows
fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing
diagram shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes
represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set
when a compare match occurs.

fOCnA

fclk_I/O

2 N 1 OCRnA+()⋅ ⋅---=

RFPWM
TOP 1+()log

2()log
-----------------------------------=

103
2466R–AVR–06/08

ATmega16(L)

Figure 46. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A
or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1x1:0 to 3 (See Table 44 on page 110). The actual OC1x
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

TCNTn

OCRnx / TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
OCnA Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

104
2466R–AVR–06/08

ATmega16(L)

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is
similar to the OC1A toggle in CTC mode, except the double buffer feature of the output compare
unit is enabled in the fast PWM mode.

Phase Correct PWM
Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1,2,3,10,
or 11) provides a high resolution phase correct PWM waveform generation option. The phase
correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-slope
operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to
BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared on
the compare match between TCNT1 and OCR1x while upcounting, and set on the compare
match while downcounting. In inverting Output Compare mode, the operation is inverted. The
dual-slope operation has lower maximum operation frequency than single slope operation. How-
ever, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for
motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 47. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Inter-
rupt Flag will be set when a compare match occurs.

fOCnxPWM

fclk_I/O

N 1 TOP+()⋅-----------------------------------=

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

105
2466R–AVR–06/08

ATmega16(L)

Figure 47. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accord-
ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 47 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1x Reg-
ister. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x1:0 to 3 (See Table 44 on page 110). The
actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Regis-
ter at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

106
2466R–AVR–06/08

ATmega16(L)

the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

Phase and Frequency
Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 47
and Figure 48).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and
the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 48. The figure shows phase and frequency correct PWM
mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram
shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes repre-
sent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a
compare match occurs.

fOCnxPCPWM

fclk_I/O

2 N TOP⋅ ⋅----------------------------=

RPFCPWM
TOP 1+()log

2()log
-----------------------------------=

107
2466R–AVR–06/08

ATmega16(L)

Figure 48. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 48 shows the output generated is, in contrast to the phase correct mode, symmetrical
in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising and
the falling slopes will always be equal. This gives symmetrical output pulses and is therefore fre-
quency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COM1x1:0 to 3 (See Table on page
111). The actual OC1x value will only be visible on the port pin if the data direction for the port
pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the
OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-
ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the

OCRnx / TOP Update
and
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

fOCnxPFCPWM

fclk_I/O

2 N TOP⋅ ⋅----------------------------=

108
2466R–AVR–06/08

ATmega16(L)

output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle
with a 50% duty cycle.

Timer/Counter
Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 49 shows a timing diagram for the setting of OCF1x.

Figure 49. Timer/Counter Timing Diagram, Setting of OCF1x, No Prescaling

Figure 50 shows the same timing data, but with the prescaler enabled.

Figure 50. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 51 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

109
2466R–AVR–06/08

ATmega16(L)

will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 51. Timer/Counter Timing Diagram, no Prescaling

Figure 52 shows the same timing data, but with the prescaler enabled.

Figure 52. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

110
2466R–AVR–06/08

ATmega16(L)

16-bit
Timer/Counter
Register
Description

Timer/Counter1
Control Register A –
TCCR1A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Channel B

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is depen-
dent of the WGM13:0 bits setting. Table 44 shows the COM1x1:0 bit functionality when the
WGM13:0 bits are set to a normal or a CTC mode (non-PWM).

Table 45 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM
mode.

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W W W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 44. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 Toggle OC1A/OC1B on compare match

1 0 Clear OC1A/OC1B on compare match (Set
output to low level)

1 1 Set OC1A/OC1B on compare match (Set
output to high level)

111
2466R–AVR–06/08

ATmega16(L)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM Mode” on page 102. for more details.

Table 46 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase cor-
rect or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See
“Phase Correct PWM Mode” on page 104. for more details.

• Bit 3 – FOC1A: Force Output Compare for Channel A

• Bit 2 – FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCR1A is written when operating in a PWM mode. When writing a logical one to the
FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit.
The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the
FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1x1:0 bits that determine the effect of the forced compare.

Table 45. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 WGM13:0 = 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port
operation).

For all other WGM13:0 settings, normal port
operation, OCnA/OCnB disconnected.

1 0 Clear OC1A/OC1B on compare match, set
OC1A/OC1B at BOTTOM,
(non-inverting mode)

1 1 Set OC1A/OC1B on compare match, clear
OC1A/OC1B at BOTTOM,

(inverting mode)

Table 46. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM (1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 WGM13:0 = 9 or 14: Toggle OCnA on
Compare Match, OCnB disconnected (normal
port operation).

For all other WGM13:0 settings, normal port
operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on compare match when
up-counting. Set OC1A/OC1B on compare
match when downcounting.

1 1 Set OC1A/OC1B on compare match when up-
counting. Clear OC1A/OC1B on compare
match when downcounting.

112
2466R–AVR–06/08

ATmega16(L)

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

• Bit 1:0 – WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 47. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types
of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page 101.)

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

Table 47. Waveform Generation Mode Bit Description(1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10) Timer/Counter Mode of Operation TOP

Update of
OCR1x

TOV1 Flag Set
on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency Correct ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and Frequency Correct OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 Reserved – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

113
2466R–AVR–06/08

ATmega16(L)

Timer/Counter1
Control Register B –
TCCR1B

• Bit 7 – ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is
activated, the input from the Input Capture Pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the Noise Canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-
ture function is disabled.

• Bit 5 – Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode

See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
49 and Figure 50.

Bit 7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 48. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

114
2466R–AVR–06/08

ATmega16(L)

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

Timer/Counter1 –
TCNT1H and TCNT1L

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and Low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 92.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-
pare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock
for all compare units.

Output Compare
Register 1 A –
OCR1AH and OCR1AL

Output Compare
Register 1 B –
OCR1BH and OCR1BL

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an output compare interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and Low bytes
are written simultaneously when the CPU writes to these registers, the access is performed
using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the
other 16-bit registers. See “Accessing 16-bit Registers” on page 92.

Input Capture Register
1 – ICR1H and ICR1L

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H

TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH

OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH

OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

115
2466R–AVR–06/08

ATmega16(L)

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the analog comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and Low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 92.

Timer/Counter
Interrupt Mask
Register – TIMSK (1)

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timer1 bits are
described in this section. The remaining bits are described in their respective timer sections.

• Bit 5 – TICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture Interrupt is enabled. The corresponding Interrupt
Vector (See “Interrupts” on page 45.) is executed when the ICF1 Flag, located in TIFR, is set.

• Bit 4 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 45.) is executed when the OCF1A Flag, located in
TIFR, is set.

• Bit 3 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 45.) is executed when the OCF1B Flag, located in
TIFR, is set.

• Bit 2 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow Interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page 45.) is executed when the TOV1 Flag, located in TIFR, is set.

Timer/Counter
Interrupt Flag Register
– TIFR

Note: This register contains flag bits for several Timer/Counters, but only Timer1 bits are described in
this section. The remaining bits are described in their respective timer sections.

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

116
2466R–AVR–06/08

ATmega16(L)

• Bit 5 – ICF1: Timer/Count er1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the coun-
ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

• Bit 4 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 3 – OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 2 – TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the
TOV1 Flag is set when the timer overflows. Refer to Table 47 on page 112 for the TOV1 Flag
behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow interrupt vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

117
2466R–AVR–06/08

ATmega16(L)

8-bit
Timer/Counter2
with PWM and
Asynchronous
Operation

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. The
main features are:
• Single Compare unit Counter
• Clear Timer on Compar e Match (Auto Reload)
• Glitch-free, Phase Correct Pu lse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)
• Allows clocking from External 32 kHz Wa tch Crystal Independent of the I/O Clock

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 53. For the actual place-
ment of I/O pins, refer to “Pinout ATmega16” on page 2. CPU accessible I/O Registers, including
I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are
listed in the “8-bit Timer/Counter Register Description” on page 128.

Figure 53. 8-bit Timer/Counter Block Diagram

Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt
request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and
TIMSK are not shown in the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkT2).

Timer/Counter

D
AT

A
B

U
S

=

TCNTn

Waveform
Generation

OCn

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCn
(Int.Req.)

Synchronization Unit

OCRn

TCCRn

ASSRn
Status flags

clk I/O

clk ASY

Synchronized Status flags

asynchronous mode
select (ASn)

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clkTn

clk I/O

118
2466R–AVR–06/08

ATmega16(L)

The double buffered Output Compare Register (OCR2) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the waveform generator to generate
a PWM or variable frequency output on the Output Compare Pin (OC2). See “Output Compare
Unit” on page 119. for details. The compare match event will also set the Compare Flag (OCF2)
which can be used to generate an output compare interrupt request.

Definitions Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used (i.e., TCNT2 for accessing Timer/Counter2
counter value and so on). The definitions in Table 49 are also used extensively throughout the
document.

Timer/Counter
Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “Asyn-
chronous Status Register – ASSR” on page 131. For details on clock sources and prescaler, see
“Timer/Counter Prescaler” on page 134.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
54 shows a block diagram of the counter and its surrounding environment.

Figure 54. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clk T2 Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.

Table 49. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal
255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR2 Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

topbottom

direction

clear

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn

119
2466R–AVR–06/08

ATmega16(L)

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC2. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 122.

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation selected by
the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

Output Compare
Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2). Whenever TCNT2 equals OCR2, the comparator signals a match. A match will set the
Output Compare Flag (OCF2) at the next timer clock cycle. If enabled (OCIE2 = 1), the Output
Compare Flag generates an output compare interrupt. The OCF2 Flag is automatically cleared
when the interrupt is executed. Alternatively, the OCF2 Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGM21:0 bits and Compare Output
mode (COM21:0) bits. The max and bottom signals are used by the waveform generator for han-
dling the special cases of the extreme values in some modes of operation (“Modes of Operation”
on page 122). Figure 55 shows a block diagram of the output compare unit.

Figure 55. Output Compare Unit, Block Diagram

The OCR2 Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCR2 Compare Register

OCFn (Int.Req.)

= (8-bit Comparator)

OCRn

OCxy

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMn1:0

bottom

120
2466R–AVR–06/08

ATmega16(L)

to either top or bottom of the counting sequence. The synchronization prevents the occurrence
of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR2 Buffer Register, and if double buffering is disabled
the CPU will access the OCR2 directly.

Force Output
Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2) bit. Forcing compare match will not set the
OCF2 Flag or reload/clear the timer, but the OC2 pin will be updated as if a real compare match
had occurred (the COM21:0 bits settings define whether the OC2 pin is set, cleared or toggled).

Compare Match
Blocking by TCNT2
Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2 to be initialized
to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

Using the Output
Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the output compare unit, inde-
pendently of whether the Timer/Counter is running or not. If the value written to TCNT2 equals
the OCR2 value, the compare match will be missed, resulting in incorrect waveform generation.
Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port
pin to output. The easiest way of setting the OC2 value is to use the Force Output Compare
(FOC2) strobe bit in Normal mode. The OC2 Register keeps its value even when changing
between Waveform Generation modes.

Be aware that the COM21:0 bits are not double buffered together with the compare value.
Changing the COM21:0 bits will take effect immediately.

121
2466R–AVR–06/08

ATmega16(L)

Compare Match
Output Unit

The Compare Output mode (COM21:0) bits have two functions. The Waveform Generator uses
the COM21:0 bits for defining the Output Compare (OC2) state at the next compare match. Also,
the COM21:0 bits control the OC2 pin output source. Figure 56 shows a simplified schematic of
the logic affected by the COM21:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the fig-
ure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT)
that are affected by the COM21:0 bits are shown. When referring to the OC2 state, the reference
is for the internal OC2 Register, not the OC2 pin.

Figure 56. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC2) from the waveform
generator if either of the COM21:0 bits are set. However, the OC2 pin direction (input or output)
is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Regis-
ter bit for the OC2 pin (DDR_OC2) must be set as output before the OC2 value is visible on the
pin. The port override function is independent of the Waveform Generation mode.

The design of the output compare pin logic allows initialization of the OC2 state before the out-
put is enabled. Note that some COM21:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 128.

Compare Output Mode
and Waveform
Generation

The waveform generator uses the COM21:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COM21:0 = 0 tells the Waveform Generator that no action on the OC2
Register is to be performed on the next compare match. For compare output actions in the non-
PWM modes refer to Table 51 on page 129. For fast PWM mode, refer to Table 52 on page 129,
and for phase correct PWM refer to Table 53 on page 129.

A change of the COM21:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2 strobe bits.

PORT

DDR

D Q

D Q

OCn
PinOCn

D Q
Waveform
Generator

COMn1

COMn0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O

122
2466R–AVR–06/08

ATmega16(L)

Modes of
Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is
defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Output
mode (COM21:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM21:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM21:0 bits control whether the output should be set, cleared, or toggled at a compare
match (See “Compare Match Output Unit” on page 121.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 126.

Normal Mode The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software. There
are no special cases to consider in the normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the out-
put compare to generate waveforms in normal mode is not recommended, since this will occupy
too much of the CPU time.

Clear Timer on
Compare Match (CTC)
Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to manip-
ulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value
(TCNT2) matches the OCR2. The OCR2 defines the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also sim-
plifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 57. The counter value (TCNT2)
increases until a compare match occurs between TCNT2 and OCR2, and then counter (TCNT2)
is cleared.

Figure 57. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2 Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2 is lower than the current

TCNTn

OCn
(Toggle)

OCn Interrupt Flag Set

1 4Period 2 3

(COMn1:0 = 1)

123
2466R–AVR–06/08

ATmega16(L)

value of TCNT2, the counter will miss the compare match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can
occur.

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM21:0 = 1). The OC2 value will not be visible on the port pin unless the data direction for the
pin is set to output. The waveform generated will have a maximum frequency of fOC2 = fclk_I/O/2
when OCR2 is set to zero (0x00). The waveform frequency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC2) is cleared on the compare
match between TCNT2 and OCR2, and set at BOTTOM. In inverting Compare Output mode, the
output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 58. The TCNT2 value is in the timing diagram shown as a histo-
gram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2 and TCNT2.

Figure 58. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

fOCn

fclk_I/O

2 N 1 OCRn+()⋅ ⋅---=

TCNTn

OCRn Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Interrupt Flag Set

4 5 6 7

124
2466R–AVR–06/08

ATmega16(L)

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Set-
ting the COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM21:0 to 3 (see Table 52 on page 129). The actual OC2 value
will only be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by setting (or clearing) the OC2 Register at the compare match between
OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer clock cycle the coun-
ter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be
a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a
constantly high or low output (depending on the polarity of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2 to toggle its logical level on each compare match (COM21:0 = 1). The waveform
generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2 is set to zero. This fea-
ture is similar to the OC2 toggle in CTC mode, except the double buffer feature of the output
compare unit is enabled in the fast PWM mode.

Phase Correct PWM
Mode

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2) is cleared on the compare match
between TCNT2 and OCR2 while upcounting, and set on the compare match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to 8 bits. In phase correct PWM
mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 59.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent compare matches between OCR2 and TCNT2.

fOCnPWM

fclk_I/O

N 256⋅------------------=

125
2466R–AVR–06/08

ATmega16(L)

Figure 59. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2 pin. Setting the COM21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM out-
put can be generated by setting the COM21:0 to 3 (see Table 53 on page 129). The actual OC2
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2 Register at the compare match
between OCR2 and TCNT2 when the counter increments, and setting (or clearing) the OC2
Register at compare match between OCR2 and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2 is set equal to BOTTOM, the out-
put will be continuously low and if set equal to MAX the output will be continuously high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of Period 2 in Figure 59 OCn has a transition from high to l ow even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that will give transition without Compare Match:

• OCR2A changes its value from Max, like in Figure 59. When the OCR2A value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must be correspond the the result of an
up-counting Compare Match.

• The Timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn that would have happened on the way up.

TOVn Interrupt Flag Set

OCn Interrupt Flag Set

1 2 3

TCNTn

Period

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Update

fOCnPCPWM

fclk_I/O

N 510⋅------------------=

126
2466R–AVR–06/08

ATmega16(L)

Timer/Counter
Timing Diagrams

The following figures show the Timer/Counter in Synchronous mode, and the timer clock (clkT2)
is therefore shown as a clock enable signal. In Asynchronous mode, clkI/O should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 60 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 60. Timer/Counter Timing Diagram, no Prescaling

Figure 61 shows the same timing data, but with the prescaler enabled.

Figure 61. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 62 shows the setting of OCF2 in all modes except CTC mode.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

127
2466R–AVR–06/08

ATmega16(L)

Figure 62. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (fclk_I/O/8)

Figure 63 shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

Figure 63. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Pres-
caler (fclk_I/O/8)

OCFn

OCRn

TCNTn

OCRn Value

OCRn - 1 OCRn OCRn + 1 OCRn + 2

clkI/O

clkTn
(clkI/O/8)

OCFn

OCRn

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

128
2466R–AVR–06/08

ATmega16(L)

8-bit
Timer/Counter
Register
Description

Timer/Counter Control
Register – TCCR2

• Bit 7 – FOC2: Force Output Compare

The FOC2 bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2 is written when
operating in PWM mode. When writing a logical one to the FOC2 bit, an immediate compare
match is forced on the waveform generation unit. The OC2 output is changed according to its
COM21:0 bits setting. Note that the FOC2 bit is implemented as a strobe. Therefore it is the
value present in the COM21:0 bits that determines the effect of the forced compare.

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2 as TOP.

The FOC2 bit is always read as zero.

• Bit 3, 6 – WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 50 and “Modes of Operation” on
page 122.

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

• Bit 5:4 – COM21:0: Compare Match Output Mode

These bits control the Output Compare pin (OC2) behavior. If one or both of the COM21:0 bits
are set, the OC2 output overrides the normal port functionality of the I/O pin it is connected to.
However, note that the Data Direction Register (DDR) bit corresponding to OC2 pin must be set
in order to enable the output driver.

Bit 7 6 5 4 3 2 1 0

FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 TCCR2

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 50. Waveform Generation Mode Bit Description(1)

Mode
WGM21
(CTC2)

WGM20
(PWM2)

Timer/Counter Mode of
Operation TOP

Update of
OCR2

TOV2 Flag
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR2 Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX

129
2466R–AVR–06/08

ATmega16(L)

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the WGM21:0
bit setting. Table 51 shows the COM21:0 bit functionality when the WGM21:0 bits are set to a
normal or CTC mode (non-PWM).

Table 52 shows the COM21:0 bit functionality when the WGM21:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare
match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 123
for more details.

Table 53 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase correct
PWM mode
.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare
match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page
124 for more details.

Table 51. Compare Output Mode, non-PWM Mode

COM21 COM20 Description

0 0 Normal port operation, OC2 disconnected.

0 1 Toggle OC2 on compare match

1 0 Clear OC2 on compare match

1 1 Set OC2 on compare match

Table 52. Compare Output Mode, Fast PWM Mode(1)

COM21 COM20 Description

0 0 Normal port operation, OC2 disconnected.

0 1 Reserved

1 0 Clear OC2 on compare match, set OC2 at BOTTOM,
(non-inverting mode)

1 1 Set OC2 on compare match, clear OC2 at BOTTOM,

(inverting mode)

Table 53. Compare Output Mode, Phase Correct PWM Mode(1)

COM21 COM20 Description

0 0 Normal port operation, OC2 disconnected.

0 1 Reserved

1 0 Clear OC2 on compare match when up-counting. Set OC2 on compare
match when downcounting.

1 1 Set OC2 on compare match when up-counting. Clear OC2 on compare
match when downcounting.

130
2466R–AVR–06/08

ATmega16(L)

• Bit 2:0 – CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
54.

Timer/Counter
Register – TCNT2

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,
introduces a risk of missing a compare match between TCNT2 and the OCR2 Register.

Output Compare
Register – OCR2

The Output Compare Register contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an output compare interrupt, or to
generate a waveform output on the OC2 pin.

Table 54. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR2[7:0] OCR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

131
2466R–AVR–06/08

ATmega16(L)

Asynchronous
Operation of the
Timer/Counter

Asynchronous Status
Register – ASSR

• Bit 3 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter 2 is clocked from the I/O clock, clkI/O. When AS2 is
written to one, Timer/Counter2 is clocked from a Crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2, and
TCCR2 might be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 1 – OCR2UB: Output Co mpare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2 is written, this bit becomes set.
When OCR2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2 is ready to be updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes set.
When TCCR2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCCR2 is ready to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading TCNT2,
the actual timer value is read. When reading OCR2 or TCCR2, the value in the temporary stor-
age register is read.

Asynchronous
Operation of
Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2, and TCCR2 might be corrupted. A
safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2, and TCCR2.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

5. Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.

Bit 7 6 5 4 3 2 1 0

– – – – AS2 TCN2UB OCR2UB TCR2UB ASSR

Read/Write R R R R R/W R R R

Initial Value 0 0 0 0 0 0 0 0

132
2466R–AVR–06/08

ATmega16(L)

• The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external
clock to the TOSC1 pin may result in incorrect Timer/Counter2 operation. The CPU main
clock frequency must be more than four times the Oscillator frequency.

• When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not
write a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register,
which means for example that writing to TCNT2 does not disturb an OCR2 write in progress.
To detect that a transfer to the destination register has taken place, the Asynchronous Status
Register – ASSR has been implemented.

• When entering Power-save or Extended Standby mode after having written to TCNT2,
OCR2, or TCCR2, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if the Output Compare2
interrupt is used to wake up the device, since the output compare function is disabled during
writing to OCR2 or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode
before the OCR2UB bit returns to zero, the device will never receive a compare match
interrupt, and the MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the
device will fail to wake up. If the user is in doubt whether the time before re-entering Power-
save or Extended Standby mode is sufficient, the following algorithm can be used to ensure
that one TOSC1 cycle has elapsed:

1. Write a value to TCCR2, TCNT2, or OCR2.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

3. Enter Power-save or Extended Standby mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2
is always running, except in Power-down and Standby modes. After a Power-up Reset or
wake-up from Power-down or Standby mode, the user should be aware of the fact that this
Oscillator might take as long as one second to stabilize. The user is advised to wait for at
least one second before using Timer/Counter2 after power-up or wake-up from Power-down
or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost
after a wake-up from Power-down or Standby mode due to unstable clock signal upon start-
up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

• Description of wake up from Power-save or Extended Standby mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is started
on the following cycle of the timer clock, that is, the timer is always advanced by at least one
before the processor can read the counter value. After wake-up, the MCU is halted for four
cycles, it executes the interrupt routine, and resumes execution from the instruction
following SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2
must be done through a register synchronized to the internal I/O clock domain.
Synchronization takes place for every rising TOSC1 edge. When waking up from Power-
save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the previous
value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC
clock after waking up from Power-save mode is essentially unpredictable, as it depends on
the wake-up time. The recommended procedure for reading TCNT2 is thus as follows:

133
2466R–AVR–06/08

ATmega16(L)

1. Write any value to either of the registers OCR2 or TCCR2.

2. Wait for the corresponding Update Busy Flag to be cleared.

3. Read TCNT2.

• During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes three processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting
of the Interrupt Flag. The output compare pin is changed on the timer clock and is not
synchronized to the processor clock.

Timer/Counter
Interrupt Mask
Register – TIMSK

• Bit 7 – OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match interrupt is enabled. The corresponding interrupt is executed if
a compare match in Timer/Counter2 occurs, i.e., when the OCF2 bit is set in the Timer/Counter
Interrupt Flag Register – TIFR.

• Bit 6 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter Interrupt
Flag Register – TIFR.

Timer/Counter
Interrupt Flag Register
– TIFR

• Bit 7 – OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2 – Output Compare Register2. OCF2 is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCF2 is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE2 (Timer/Counter2 Compare match Interrupt Enable), and
OCF2 are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 6 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2 (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at $00.

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

134
2466R–AVR–06/08

ATmega16(L)

Timer/Counter
Prescaler

Figure 64. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main
system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal. Apply-
ing an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.
Setting the PSR2 bit in SFIOR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler.

Special Function IO
Register – SFIOR

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be cleared
by hardware after the operation is performed. Writing a zero to this bit will have no effect. This bit
will always be read as zero if Timer/Counter2 is clocked by the internal CPU clock. If this bit is
written when Timer/Counter2 is operating in asynchronous mode, the bit will remain one until the
prescaler has been reset.

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clkI/O clkT2S

TOSC1

AS2

CS20
CS21
CS22

cl
k T

2S
/8

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/1

02
4

cl
k T

2S
/2

56

cl
k T

2S
/3

2

0PSR2

Clear

clkT2

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

135
2466R–AVR–06/08

ATmega16(L)

Serial
Peripheral
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega16 and peripheral devices or between several AVR devices. The ATmega16 SPI
includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 65. SPI Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, and Table 25 on page 58 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 66. The sys-
tem consists of two Shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective Shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128

136
2466R–AVR–06/08

ATmega16(L)

byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 66. SPI Master-Slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 55 on page 136. For more details on automatic port overrides, refer to “Alter-
nate Port Functions” on page 55.

Table 55. SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

MSB MASTER LSB

8 BIT SHIFT REGISTER

MSB SLAVE LSB

8 BIT SHIFT REGISTER
MISO

MOSI

SPI
CLOCK GENERATOR

SCK

SS

MISO

MOSI

SCK

SS

SHIFT
ENABLE

137
2466R–AVR–06/08

ATmega16(L)

Note: See “Alternate Functions of Port B” on page 58 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the
actual data direction bits for these pins. For example if MOSI is placed on pin PB5, replace
DD_MOSI with DDB5 and DDR_SPI with DDRB.

138
2466R–AVR–06/08

ATmega16(L)

Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

139
2466R–AVR–06/08

ATmega16(L)

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return data register */

return SPDR;

}

140
2466R–AVR–06/08

ATmega16(L)

SS Pin
Functionality

Slave Mode When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs except MISO which can be user
configured as an output, and the SPI is passive, which means that it will not receive incoming
data. Note that the SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the Slave Bit Counter synchronous
with the Master Clock generator. When the SS pin is driven high, the SPI Slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

Master Mode When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another Master selecting the SPI as a
Slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a Slave Select, it must be set by the user to re-enable SPI Master
mode.

SPI Control Register –
SPCR

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the global interrupt enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

141
2466R–AVR–06/08

ATmega16(L)

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 67 and Figure 68 for an example. The CPOL functionality is summa-
rized below:

• Bit 2 – CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 67 and Figure 68 for an example. The CPHA func-
tionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is
shown in the following table:

Table 56. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 57. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 58. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

142
2466R–AVR–06/08

ATmega16(L)

SPI Status Register –
SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 58). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4
or lower.

The SPI interface on the ATmega16 is also used for program memory and EEPROM download-
ing or uploading. See page 273 for SPI Serial Programming and Verification.

SPI Data Register –
SPDR

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

143
2466R–AVR–06/08

ATmega16(L)

Data Modes There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
67 and Figure 68. Data bits are shifted out and latched in on opposite edges of the SCK signal,
ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing Table
56 and Table 57, as done below:

Figure 67. SPI Transfer Format with CPHA = 0

Figure 68. SPI Transfer Format with CPHA = 1

Table 59. CPOL and CPHA Functionality

Leading Edge Trailing Edge SPI Mode

CPOL = 0, CPHA = 0 Sample (Rising) Setup (Falling) 0

CPOL = 0, CPHA = 1 Setup (Rising) Sample (Falling) 1

CPOL = 1, CPHA = 0 Sample (Falling) Setup (Rising) 2

CPOL = 1, CPHA = 1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

144
2466R–AVR–06/08

ATmega16(L)

USART The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device. The main features are:
• Full Duplex Operation (I ndependent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty, and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

Overview A simplified block diagram of the USART transmitter is shown in Figure 69. CPU accessible I/O
Registers and I/O pins are shown in bold.

Figure 69. USART Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, Table 33 on page 65, and Table 27 on page 60 for USART pin
placement.

PARITY

GENERATOR

UBRR[H:L]

UDR (Transmit)

UCSRA UCSRB UCSRC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxD

TxD
PIN

CONTROL

UDR (Receive)

PIN

CONTROL

XCK

DATA

RECOVERY

CLOCK

RECOVERY

PIN

CONTROL

TX

CONTROL

RX

CONTROL

PARITY

CHECKER

D
A

T
A

B
U

S

OSC

SYNC LOGIC

Clock Generator

Transmitter

Receiver

145
2466R–AVR–06/08

ATmega16(L)

The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.
The clock generation logic consists of synchronization logic for external clock input used by syn-
chronous Slave operation, and the baud rate generator. The XCK (Transfer Clock) pin is only
used by Synchronous Transfer mode. The Transmitter consists of a single write buffer, a serial
Shift Register, parity generator and control logic for handling different serial frame formats. The
write buffer allows a continuous transfer of data without any delay between frames. The
Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the receiver includes a parity checker, control logic, a Shift Register and a two level
receive buffer (UDR). The receiver supports the same frame formats as the transmitter, and can
detect frame error, data overrun and parity errors.

AVR USART vs. AVR
UART – Compatibility

The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers

• Baud Rate Generation

• Transmitter Operation

• Transmit Buffer Functionality

• Receiver Operation

However, the receive buffering has two improvements that will affect the compatibility in some
special cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a circular
FIFO buffer. Therefore the UDR must only be read once for each incoming data! More
important is the fact that the Error Flags (FE and DOR) and the 9th data bit (RXB8) are
buffered with the data in the receive buffer. Therefore the status bits must always be read
before the UDR Register is read. Otherwise the error status will be lost since the buffer state
is lost.

• The receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register (see Figure 69) if the Buffer Registers are
full, until a new start bit is detected. The USART is therefore more resistant to Data OverRun
(DOR) error conditions.

The following control bits have changed name, but have same functionality and register location:

• CHR9 is changed to UCSZ2

• OR is changed to DOR

Clock Generation The clock generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal Asynchronous, Double Speed Asyn-
chronous, Master Synchronous and Slave Synchronous mode. The UMSEL bit in USART
Control and Status Register C (UCSRC) selects between asynchronous and synchronous oper-
ation. Double Speed (Asynchronous mode only) is controlled by the U2X found in the UCSRA
Register. When using Synchronous mode (UMSEL = 1), the Data Direction Register for the XCK
pin (DDR_XCK) controls whether the clock source is internal (Master mode) or external (Slave
mode). The XCK pin is only active when using Synchronous mode.

Figure 70 shows a block diagram of the clock generation logic.

146
2466R–AVR–06/08

ATmega16(L)

Figure 70. Clock Generation Logic, Block Diagram

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (Internal Signal). Used for synchronous Slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous Master
operation.

fosc XTAL pin frequency (System Clock).

Internal Clock
Generation – The
Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous Master modes of
operation. The description in this section refers to Figure 70.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRR value each time the counter has counted down to zero or when
the UBRRL Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= fosc/(UBRR+1)). The Transmitter divides the
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-
put is used directly by the receiver’s clock and data recovery units. However, the recovery units
use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSEL, U2X and DDR_XCK bits.

Table 60 contains equations for calculating the baud rate (in bits per second) and for calculating
the UBRR value for each mode of operation using an internally generated clock source.

Prescaling

Down-Counter
/ 2

UBRR

/ 4 / 2

fosc

UBRR+1

Sync

Register

OSC

XCK

Pin

txclk

U2X

UMSEL

DDR_XCK

0

1

0

1

xcki

xcko

DDR_XCK
rxclk

0

1

1

0

Edge

Detector

UCPOL

147
2466R–AVR–06/08

ATmega16(L)

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)

Some examples of UBRR values for some system clock frequencies are found in Table 68 (see
page 168).

Double Speed
Operation (U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect
for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

External Clock External clocking is used by the synchronous Slave modes of operation. The description in this
section refers to Figure 70 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and receiver. This process introduces
a two CPU clock period delay and therefore the maximum external XCK clock frequency is lim-
ited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

Table 60. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating

Baud Rate (1)

Equation for
Calculating UBRR

Value

Asynchronous Normal Mode
(U2X = 0)

Asynchronous Double Speed Mode
(U2X = 1)

Synchronous Master Mode

BAUD
fOSC

16 UBRR 1+()---------------------------------------= UBRR
fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRR 1+()-----------------------------------= UBRR
fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRR 1+()-----------------------------------= UBRR
fOSC

2BAUD
-------------------- 1–=

fXCK

fOSC

4
-----------<

148
2466R–AVR–06/08

ATmega16(L)

Synchronous Clock
Operation

When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxD) is sampled at the
opposite XCK clock edge of the edge the data output (TxD) is changed.

Figure 71. Synchronous Mode XCK Timing.

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and which is
used for data change. As Figure 71 shows, when UCPOL is zero the data will be changed at ris-
ing XCK edge and sampled at falling XCK edge. If UCPOL is set, the data will be changed at
falling XCK edge and sampled at rising XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 72 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 72. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

149
2466R–AVR–06/08

ATmega16(L)

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0, and USBS bits in
UCSRB and UCSRC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPM1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The receiver ignores the
second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the first
stop bit is zero.

Parity Bit Calculation The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows::

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

USART
Initialization

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXC Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXC Flag must be
cleared before each transmission (before UDR is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16 regis-
ters. When the function writes to the UCSRC Register, the URSEL bit (MSB) must be set due to
the sharing of I/O location by UBRRH and UCSRC.

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=

150
2466R–AVR–06/08

ATmega16(L)

Note: 1. See “About Code Examples” on page 7.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the Baud and
Control Registers, and for these types of applications the initialization code can be placed
directly in the main routine, or be combined with initialization code for other I/O modules.

Data Transmission – The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRB
Register. When the Transmitter is enabled, the normal port operation of the TxD pin is overrid-
den by the USART and given the function as the transmitter’s serial output. The baud rate, mode
of operation and frame format must be set up once before doing any transmissions. If synchro-
nous operation is used, the clock on the XCK pin will be overridden and used as transmission
clock.

Sending Frames with
5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDR I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRH, r17

out UBRRL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN)|(1<<TXEN)

out UCSRB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<URSEL)|(1<<USBS)|(3<<UCSZ0)

out UCSRC,r16

ret

C Code Example(1)

#define FOSC 1843200// Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main(void)

{

...

USART_Init (MYUBRR);

...

}

void USART_Init(unsigned int ubrr)

{

/* Set baud rate */

UBRRH = (unsigned char)(ubrr>>8);

UBRRL = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, 2stop bit */

UCSRC = (1<<URSEL)|(1<<USBS)|(3<<UCSZ0);

}

151
2466R–AVR–06/08

ATmega16(L)

frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2X bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDRE) Flag. When using frames with less than eight bits, the most signif-
icant bits written to the UDR are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16

Note: 1. See “About Code Examples” on page 7.

The function simply waits for the transmit buffer to be empty by checking the UDRE Flag, before
loading it with new data to be transmitted. If the Data Register Empty Interrupt is utilized, the
interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDR,r16

ret

C Code Example(1)

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(UCSRA & (1<<UDRE)))

;

/* Put data into buffer, sends the data */

UDR = data;

}

152
2466R–AVR–06/08

ATmega16(L)

Sending Frames with
9 Data Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in UCSRB
before the Low byte of the character is written to UDR. The following code examples show a
transmit function that handles 9-bit characters. For the assembly code, the data to be sent is
assumed to be stored in Registers R17:R16.

Note: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRB is static. (i.e., only the TXB8 bit of the UCSRB Register is used after
initialization).

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

Transmitter Flags and
Interrupts

The USART transmitter has two flags that indicate its state: USART Data Register Empty
(UDRE) and Transmit Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRA Register.

When the Data Register empty Interrupt Enable (UDRIE) bit in UCSRB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDRE is set (provided that
global interrupts are enabled). UDRE is cleared by writing UDR. When interrupt-driven data
transmission is used, the Data Register Empty Interrupt routine must either write new data to
UDR in order to clear UDRE or disable the Data Register empty Interrupt, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRB,TXB8

sbrc r17,0

sbi UCSRB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDR,r16

ret

C Code Example(1)

void USART_Transmit(unsigned int data)

{

/* Wait for empty transmit buffer */

while (!(UCSRA & (1<<UDRE))))

;

/* Copy 9th bit to TXB8 */

UCSRB &= ~(1<<TXB8);

if (data & 0x0100)

UCSRB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDR = data;

}

153
2466R–AVR–06/08

ATmega16(L)

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXC Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXC Flag is useful in half-duplex
communication interfaces (like the RS485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART Transmit
Complete Interrupt will be executed when the TXC Flag becomes set (provided that global inter-
rupts are enabled). When the transmit complete interrupt is used, the interrupt handling routine
does not have to clear the TXC Flag, this is done automatically when the interrupt is executed.

Parity Generator The parity generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPM1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

Disabling the
Transmitter

The disabling of the transmitter (setting the TXEN to zero) will not become effective until ongoing
and pending transmissions are completed, i.e., when the transmit Shift Register and transmit
Buffer Register do not contain data to be transmitted. When disabled, the transmitter will no lon-
ger override the TxD pin.

154
2466R–AVR–06/08

ATmega16(L)

Data Reception –
The USART
Receiver

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the UCSRB Regis-
ter to one. When the receiver is enabled, the normal pin operation of the RxD pin is overridden
by the USART and given the function as the receiver’s serial input. The baud rate, mode of oper-
ation and frame format must be set up once before any serial reception can be done. If
synchronous operation is used, the clock on the XCK pin will be used as transfer clock.

Receiving Frames with
5 to 8 Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCK clock, and shifted into the receive Shift Register until
the first stop bit of a frame is received. A second stop bit will be ignored by the receiver. When
the first stop bit is received, i.e., a complete serial frame is present in the receive Shift Register,
the contents of the Shift Register will be moved into the receive buffer. The receive buffer can
then be read by reading the UDR I/O location.

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXC) Flag. When using frames with less than eight bits the most significant
bits of the data read from the UDR will be masked to zero. The USART has to be initialized
before the function can be used.

Note: 1. See “About Code Examples” on page 7.

The function simply waits for data to be present in the receive buffer by checking the RXC Flag,
before reading the buffer and returning the value.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSRA & (1<<RXC)))

;

/* Get and return received data from buffer */

return UDR;

}

155
2466R–AVR–06/08

ATmega16(L)

Receiving Frames with
9 Databits

If 9 bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in UCSRB
before reading the low bits from the UDR. This rule applies to the FE, DOR and PE status Flags
as well. Read status from UCSRA, then data from UDR. Reading the UDR I/O location will
change the state of the receive buffer FIFO and consequently the TXB8, FE, DOR and PE bits,
which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both 9-bit
characters and the status bits.

Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRA

in r17, UCSRB

in r16, UDR

; If error, return -1

andi r18,(1<<FE)|(1<<DOR)|(1<<PE)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRA & (1<<RXC)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRA;

resh = UCSRB;

resl = UDR;

/* If error, return -1 */

if (status & (1<<FE)|(1<<DOR)|(1<<PE))

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

156
2466R–AVR–06/08

ATmega16(L)

The receive function example reads all the I/O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

Receive Compete Flag
and Interrupt

The USART Receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the receiver is disabled (RXEN = 0),
the receive buffer will be flushed and consequently the RXC bit will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART Receive
Complete Interrupt will be executed as long as the RXC Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDR in order to clear the RXC Flag, otherwise a new interrupt
will occur once the interrupt routine terminates.

Receiver Error Flags The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR) and Parity
Error (PE). All can be accessed by reading UCSRA. Common for the Error Flags is that they are
located in the receive buffer together with the frame for which they indicate the error status. Due
to the buffering of the Error Flags, the UCSRA must be read before the receive buffer (UDR),
since reading the UDR I/O location changes the buffer read location. Another equality for the
Error Flags is that they can not be altered by software doing a write to the flag location. How-
ever, all flags must be set to zero when the UCSRA is written for upward compatibility of future
USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FE Flag is zero when the stop bit was correctly read (as one),
and the FE Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FE Flag
is not affected by the setting of the USBS bit in UCSRC since the receiver ignores all, except for
the first, stop bits. For compatibility with future devices, always set this bit to zero when writing to
UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition. A Data
OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in
the receive Shift Register, and a new start bit is detected. If the DOR Flag is set there was one or
more serial frame lost between the frame last read from UDR, and the next frame read from
UDR. For compatibility with future devices, always write this bit to zero when writing to UCSRA.
The DOR Flag is cleared when the frame received was successfully moved from the Shift Regis-
ter to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity error
when received. If parity check is not enabled the PE bit will always be read zero. For compatibil-
ity with future devices, always set this bit to zero when writing to UCSRA. For more details see
“Parity Bit Calculation” on page 149 and “Parity Checker” on page 156.

Parity Checker The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type of parity
check to be performed (odd or even) is selected by the UPM0 bit. When enabled, the parity
checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error (PE) Flag can then be read by software to
check if the frame had a parity error.

The PE bit is set if the next character that can be read from the receive buffer had a parity error
when received and the parity checking was enabled at that point (UPM1 = 1). This bit is valid
until the receive buffer (UDR) is read.

157
2466R–AVR–06/08

ATmega16(L)

Disabling the Receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXEN is set to zero) the Receiver will
no longer override the normal function of the RxD port pin. The receiver buffer FIFO will be
flushed when the receiver is disabled. Remaining data in the buffer will be lost

Flushing the Receive
Buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDR I/O location until the RXC Flag is
cleared. The following code example shows how to flush the receive buffer.

Note: 1. See “About Code Examples” on page 7.

Asynchronous
Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxD pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the receiver.
The asynchronous reception operational range depends on the accuracy of the internal baud
rate clock, the rate of the incoming frames, and the frame size in number of bits.

Asynchronous Clock
Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 73
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and 8 times the baud rate for Double Speed mode. The horizon-
tal arrows illustrate the synchronization variation due to the sampling process. Note the larger
time variation when using the double speed mode (U2X = 1) of operation. Samples denoted zero
are samples done when the RxD line is idle (i.e., no communication activity).

Figure 73. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the

Assembly Code Example(1)

USART_Flush:

sbis UCSRA, RXC

ret

in r16, UDR

rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSRA & (1<<RXC)) dummy = UDR;

}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

158
2466R–AVR–06/08

ATmega16(L)

figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

Asynchronous Data
Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in normal mode and 8 states
for each bit in Double Speed mode. Figure 74 shows the sampling of the data bits and the parity
bit. Each of the samples is given a number that is equal to the state of the recovery unit.

Figure 74. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxD pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the receiver only uses the first stop bit of a frame.

Figure 75 shows the sampling of the stop bit and the earliest possible beginning of the start bit of
the next frame.

Figure 75. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FE) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 75. For Double Speed mode the first low level must be delayed to (B).
(C) marks a stop bit of full length. The early start bit detection influences the operational range of
the receiver.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

159
2466R–AVR–06/08

ATmega16(L)

Asynchronous
Operational Range

The operational range of the receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the receiver does not have a similar (see
Table 61) base frequency, the receiver will not be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for
Double Speed mode.

SF First sample number used for majority voting. SF = 8 for Normal Speed and
SF = 4 for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for Normal Speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 61 and Table 62 list the maximum receiver baud rate error that can be tolerated. Note that
Normal Speed mode has higher toleration of baud rate variations.

Table 61. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2X =
0)

D
(Data+Parity Bit) R slow (%) Rfast (%)

Max Total
Error (%)

Recommended Max
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 62. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X =
1)

D
(Data+Parity Bit) R slow (%) Rfast (%)

Max Total
Error (%)

Recommended Max
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104.35 +4.35/-4.48 ± 1.5

Rslow
D 1+()S

S 1– D S⋅ SF+ +
---=

Rfast
D 2+()S

D 1+()S SM+
-----------------------------------=

160
2466R–AVR–06/08

ATmega16(L)

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the receiver and transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRR value
that gives an acceptable low error can be used if possible.

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0

Table 62. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X =
1)

D
(Data+Parity Bit) R slow (%) Rfast (%)

Max Total
Error (%)

Recommended Max
Receiver Error (%)

161
2466R–AVR–06/08

ATmega16(L)

Multi-processor
Communication
Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCM
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the receiver is set up for frames with
nine data bits, then the ninth bit (RXB8) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several Slave MCUs to receive data from a
Master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular Slave MCU has been addressed, it will receive the following data
frames as normal, while the other Slave MCUs will ignore the received frames until another
address frame is received.

Using MPCM For an MCU to act as a Master MCU, it can use a 9-bit character frame format (UCSZ = 7). The
ninth bit (TXB8) must be set when an address frame (TXB8 = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The Slave MCUs must in this case be set to use a 9-bit character
frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA is set).

2. The Master MCU sends an address frame, and all Slaves receive and read this frame. In
the Slave MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been selected. If so, it
clears the MPCM bit in UCSRA, otherwise it waits for the next address byte and keeps
the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCM bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCM bit and waits for a new address frame from Master. The process then repeats
from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the receiver
must change between using n and n+1 character frame formats. This makes full-duplex opera-
tion difficult since the transmitter and receiver uses the same character size setting. If 5- to 8-bit
character frames are used, the transmitter must be set to use two stop bit (USBS = 1) since the
first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The
MPCM bit shares the same I/O location as the TXC Flag and this might accidentally be cleared
when using SBI or CBI instructions.

162
2466R–AVR–06/08

ATmega16(L)

Accessing
UBRRH/ UCSRC
Registers

The UBRRH Register shares the same I/O location as the UCSRC Register. Therefore some
special consideration must be taken when accessing this I/O location.

Write Access When doing a write access of this I/O location, the high bit of the value written, the USART Reg-
ister Select (URSEL) bit, controls which one of the two registers that will be written. If URSEL is
zero during a write operation, the UBRRH value will be updated. If URSEL is one, the UCSRC
setting will be updated.

The following code examples show how to access the two registers.

Note: 1. See “About Code Examples” on page 7.

As the code examples illustrate, write accesses of the two registers are relatively unaffected of
the sharing of I/O location.

Read Access Doing a read access to the UBRRH or the UCSRC Register is a more complex operation. How-
ever, in most applications, it is rarely necessary to read any of these registers.

The read access is controlled by a timed sequence. Reading the I/O location once returns the
UBRRH Register contents. If the register location was read in previous system clock cycle, read-
ing the register in the current clock cycle will return the UCSRC contents. Note that the timed
sequence for reading the UCSRC is an atomic operation. Interrupts must therefore be controlled
(for example by disabling interrupts globally) during the read operation.

Assembly Code Example(1)

...

; Set UBRRH to 2

ldi r16,0x02

out UBRRH,r16

...

; Set the USBS and the UCSZ1 bit to one, and

; the remaining bits to zero.

ldi r16,(1<<URSEL)|(1<<USBS)|(1<<UCSZ1)

out UCSRC,r16

...

C Code Example(1)

...

/* Set UBRRH to 2 */

UBRRH = 0x02;

...

/* Set the USBS and the UCSZ1 bit to one, and */

/* the remaining bits to zero. */

UCSRC = (1<<URSEL)|(1<<USBS)|(1<<UCSZ1);

...

163
2466R–AVR–06/08

ATmega16(L)

The following code example shows how to read the UCSRC Register contents.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as an ordi-
nary register, as long as the previous instruction did not access the register location.

USART Register
Description

USART I/O Data
Register – UDR

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDR. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDR Register location. Reading the
UDR Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is set. Data
written to UDR when the UDRE Flag is not set, will be ignored by the USART Transmitter. When
data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter will load the
data into the transmit Shift Register when the Shift Register is empty. Then the data will be seri-
ally transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use read modify
write instructions (SBI and CBI) on this location. Be careful when using bit test instructions (SBIC
and SBIS), since these also will change the state of the FIFO.

Assembly Code Example(1)

USART_ReadUCSRC:

; Read UCSRC

in r16,UBRRH

in r16,UCSRC

ret

C Code Example(1)

unsigned char USART_ReadUCSRC(void)

{

unsigned char ucsrc;

/* Read UCSRC */

ucsrc = UBRRH;

ucsrc = UCSRC;

return ucsrc;

}

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDR (Read)

TXB[7:0] UDR (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

164
2466R–AVR–06/08

ATmega16(L)

USART Control and
Status Register A –
UCSRA

• Bit 7 – RXC: USAR T Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the receiver is disabled, the receive
buffer will be flushed and consequently the RXC bit will become zero. The RXC Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIE bit).

• Bit 6 – TXC: USART Transmit Complete

This flag bit is set when the entire frame in the transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDR). The TXC Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXC Flag can generate a Transmit Complete interrupt (see descrip-
tion of the TXCIE bit).

• Bit 5 – UDRE: USART Data Register Empty

The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDRE is
one, the buffer is empty, and therefore ready to be written. The UDRE Flag can generate a Data
Register empty Interrupt (see description of the UDRIE bit).

UDRE is set after a reset to indicate that the transmitter is ready.

• Bit 4 – FE: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. i.e.,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDR) is read. The FE bit is zero when the stop bit of received data is one. Always
set this bit to zero when writing to UCSRA.

• Bit 3 – DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDR) is read. Always set this bit
to zero when writing to UCSRA.

• Bit 2 – PE: Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the
parity checking was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer
(UDR) is read. Always set this bit to zero when writing to UCSRA.

• Bit 1 – U2X: Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

Bit 7 6 5 4 3 2 1 0

RXC TXC UDRE FE DOR PE U2X MPCM UCSRA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

165
2466R–AVR–06/08

ATmega16(L)

• Bit 0 – MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit is written to
one, all the incoming frames received by the USART receiver that do not contain address infor-
mation will be ignored. The transmitter is unaffected by the MPCM setting. For more detailed
information see “Multi-processor Communication Mode” on page 161.

USART Control and
Status Register B –
UCSRB

• Bit 7 – RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete Interrupt
will be generated only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is writ-
ten to one and the RXC bit in UCSRA is set.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete Interrupt
will be generated only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is writ-
ten to one and the TXC bit in UCSRA is set.

• Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty Interrupt will
be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDRE bit in UCSRA is set.

• Bit 4 – RXEN: Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-
ation for the RxD pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FE, DOR, and PE Flags.

• Bit 3 – TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero)
will not become effective until ongoing and pending transmissions are completed, i.e., when the
transmit Shift Register and transmit Buffer Register do not contain data to be transmitted. When
disabled, the transmitter will no longer override the TxD port.

• Bit 2 – UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Char-
acter Size) in a frame the receiver and transmitter use.

• Bit 1 – RXB8: Receive Data Bit 8

RXB8 is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDR.

Bit 7 6 5 4 3 2 1 0

RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 UCSRB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

166
2466R–AVR–06/08

ATmega16(L)

• Bit 0 – TXB8: Transmit Data Bit 8

TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDR.

USART Control and
Status Register C –
UCSRC

The UCSRC Register shares the same I/O location as the UBRRH Register. See the “Accessing
UBRRH/ UCSRC Registers” on page 162 section which describes how to access this register.

• Bit 7 – URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register. It is read as one when
reading UCSRC. The URSEL must be one when writing the UCSRC.

• Bit 6 – UMSEL: USART Mode Select

This bit selects between Asynchronous and Synchronous mode of operation.

• Bit 5:4 – UPM1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPM0 setting.
If a mismatch is detected, the PE Flag in UCSRA will be set.

• Bit 3 – USBS: Stop Bit Select

This bit selects the number of Stop Bits to be inserted by the Transmitter. The Receiver ignores
this setting.

Bit 7 6 5 4 3 2 1 0

URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL UCSRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 0 0 0 0 1 1 0

Table 63. UMSEL Bit Settings

UMSEL Mode

0 Asynchronous Operation

1 Synchronous Operation

Table 64. UPM Bits Settings

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 65. USBS Bit Settings

USBS Stop Bit(s)

0 1-bit

1 2-bit

167
2466R–AVR–06/08

ATmega16(L)

• Bit 2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits (Char-
acter Size) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOL: Clock Polarity

This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous mode is
used. The UCPOL bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCK).

USART Baud Rate
Registers – UBRRL
and UBRRH

The UBRRH Register shares the same I/O location as the UCSRC Register. See the “Accessing
UBRRH/ UCSRC Registers” on page 162 section which describes how to access this register.

• Bit 15 – URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as zero when
reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRH is written.

Table 66. UCSZ Bits Settings

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 67. UCPOL Bit Settings

UCPOL
Transmitted Data Changed (Output of
TxD Pin)

Received Data Sampled (Input on
RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

URSEL – – – UBRR[11:8] UBRRH

UBRR[7:0] UBRRL

7 6 5 4 3 2 1 0

Read/Write R/W R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

168
2466R–AVR–06/08

ATmega16(L)

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four
most significant bits, and the UBRRL contains the 8 least significant bits of the USART baud
rate. Ongoing transmissions by the transmitter and receiver will be corrupted if the baud rate is
changed. Writing UBRRL will trigger an immediate update of the baud rate prescaler.

Examples of Baud
Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 68. UBRR values
which yield an actual baud rate differing less than 0.5% from the target baud rate, are bold in the
table. Higher error ratings are acceptable, but the receiver will have less noise resistance when
the error ratings are high, especially for large serial frames (see “Asynchronous Operational
Range” on page 159). The error values are calculated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠⎛ ⎞ 100%•=

Table 68. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%

169
2466R–AVR–06/08

ATmega16(L)

Table 69. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR = 0, Error = 0.0%

170
2466R–AVR–06/08

ATmega16(L)

Table 70. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%

171
2466R–AVR–06/08

ATmega16(L)

Table 71. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR = 0, Error = 0.0%

172
2466R–AVR–06/08

ATmega16(L)

Two-wire Serial
Interface

Features • Simple Yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device Can Operate as Transmitter or Receiver
• 7-bit Address Space allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Up to 400 kHz Data Transfer Speed
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Re jects Spikes on Bus Lines
• Fully Programmable Slave Addr ess with General Call Support
• Address Recognition causes Wake-up when AVR is in Sleep Mode

Two-wire Serial
Interface Bus
Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 76. TWI Bus Interconnection

TWI Terminology The following definitions are frequently encountered in this section.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Table 72. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also
generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

173
2466R–AVR–06/08

ATmega16(L)

Electrical
Interconnection

As depicted in Figure 76, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit Slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 294. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.

Data Transfer and
Frame Format

Transferring Bits Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 77. Data Validity

START and STOP
Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other Master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without releas-
ing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

SDA

SCL

Data Stable Data Stable

Data Change

174
2466R–AVR–06/08

ATmega16(L)

Figure 78. START, REPEATED START, and STOP Conditions

Address Packet
Format

All address packets transmitted on the TWI bus are nine bits long, consisting of seven address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read
operation is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a Slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all Slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
Slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all Slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the Slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several Slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 79. Address Packet Format

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

175
2466R–AVR–06/08

ATmega16(L)

Data Packet Format All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the receiver pulling the SDA line low during the ninth SCL
cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 80. Data Packet Format

Combining Address
and Data Packets into
a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 81 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 81. Typical Data Transmission

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
receiverR

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

176
2466R–AVR–06/08

ATmega16(L)

Multi-master Bus
Systems,
Arbitration and
Synchronization

The TWI protocol allows bus systems with several Masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more Masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the Masters to complete the
transmission. All other Masters should cease transmission when they discover that they
have lost the selection process. This selection process is called arbitration. When a
contending Master discovers that it has lost the arbitration process, it should immediately
switch to Slave mode to check whether it is being addressed by the winning Master. The fact
that multiple Masters have started transmission at the same time should not be detectable to
the Slaves, i.e., the data being transferred on the bus must not be corrupted.

• Different Masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all Masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all Masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all Masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Figure 82. SCL Synchronization between Multiple Masters

Arbitration is carried out by all Masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
mode, checking if it is being addressed by the winning Master. The SDA line should be left high,
but losing Masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one Master remains, and this may take many
bits. If several Masters are trying to address the same Slave, arbitration will continue into the
data packet.

TA low TA high

SCL from
Master A

SCL from
Master B

SCL bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period

177
2466R–AVR–06/08

ATmega16(L)

Figure 83. Arbitration between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit

• A STOP condition and a data bit

• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDAA SDA

178
2466R–AVR–06/08

ATmega16(L)

Overview of the
TWI Module

The TWI module is comprised of several submodules, as shown in Figure 84. All registers drawn
in a thick line are accessible through the AVR data bus.

Figure 84. Overview of the TWI Module

SCL and SDA Pins These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

Bit Rate Generator
Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the Slave must be at least 16 times higher than the SCL frequency. Note
that Slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register

• TWPS = Value of the prescaler bits in the TWI Status Register
Note: Note: Pull-up resistor values should be selected according to the SCL frequency and the capaci-

tive bus line load. See Table 120 on page 294 for value of pull-up resistor.

Bus Interface Unit This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,

TWI Unit

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

SCL frequency CPU Clock frequency

16 2(TWBR) 4
TWPS⋅+

---=

179
2466R–AVR–06/08

ATmega16(L)

or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

Address Match Unit The Address Match unit checks if received address bytes match the 7-bit address in the TWI
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a Master.

Control Unit The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition

• After the TWI has transmitted SLA+R/W

• After the TWI has transmitted an address byte

• After the TWI has lost arbitration

• After the TWI has been addressed by own Slave address or general call

• After the TWI has received a data byte

• After a STOP or REPEATED START has been received while still addressed as a Slave.

• When a bus error has occurred due to an illegal START or STOP condition

180
2466R–AVR–06/08

ATmega16(L)

TWI Register
Description

TWI Bit Rate Register
– TWBR

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 178 for calculating bit rates.

TWI Control Register –
TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own Slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire
Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the Two-
wire Serial Bus. The TWI hardware checks if the bus is available, and generates a START con-
dition on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

181
2466R–AVR–06/08

ATmega16(L)

is detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT Flag is high.

TWI Status Register –
TWSR

• Bits 7..3 – TWS: TWI Status

These five bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different sta-
tus codes are described later in this section. Note that the value read from TWSR contains both
the 5-bit status value and the 2-bit prescaler value. The application designer should mask the
prescaler bits to zero when checking the Status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit

This bit is reserved and will always read as zero.

Bit 7 6 5 4 3 2 1 0

TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

182
2466R–AVR–06/08

ATmega16(L)

• Bits 1..0 – TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

To calculate bit rates, see “Bit Rate Generator Unit” on page 178. The value of TWPS1..0 is
used in the equation.

TWI Data Register –
TWDR

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-
ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains
stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously
shifted in. TWDR always contains the last byte present on the bus, except after a wake up from
a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case
of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register

These eight bits contain the next data byte to be transmitted, or the latest data byte received on
the Two-wire Serial Bus.

TWI (Slave) Address
Register – TWAR

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or receiver. In
multi-master systems, TWAR must be set in Masters which can be addressed as Slaves by
other Masters.

The LSB of TWAR is used to enable recognition of the general call address ($00). There is an
associated address comparator that looks for the Slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register

These seven bits constitute the Slave address of the TWI unit.

Table 73. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

183
2466R–AVR–06/08

ATmega16(L)

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.

Using the TWI The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 85 is a simple example of how the application can interface to the TWI hardware. In this
example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Figure 85. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent.

Application loads SLA+W into TWDR, and
loads appropriate control signalsinto

TWCR, making sure that TWINT is written
to one, and TWSTA is written to zero

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

Application
Action

TWI
Hardware

Action

184
2466R–AVR–06/08

ATmega16(L)

desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet or
not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag
is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.

185
2466R–AVR–06/08

ATmega16(L)

Assembly code example C example Comments

1 ldi r16, (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

Send START condition

2 wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

;

Wait for TWINT Flag set. This indicates
that the START condition has been
transmitted

3 in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();

Check value of TWI Status Register. Mask
prescaler bits. If status different from
START go to ERROR

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) | (1<<TWEN);

Load SLA_W into TWDR Register. Clear
TWINT bit in TWCR to start transmission
of address

4 wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;

Wait for TWINT Flag set. This indicates
that the SLA+W has been transmitted,
and ACK/NACK has been received.

5 in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_SLA_ACK)

ERROR();

Check value of TWI Status Register. Mask
prescaler bits. If status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) | (1<<TWEN);

Load DATA into TWDR Register. Clear
TWINT bit in TWCR to start transmission
of data

6 wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;

Wait for TWINT Flag set. This indicates
that the DATA has been transmitted, and
ACK/NACK has been received.

7 in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_DATA_ACK)

ERROR();

Check value of TWI Status Register. Mask
prescaler bits. If status different from
MT_DATA_ACK go to ERROR

ldi r16, (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);

Transmit STOP condition

186
2466R–AVR–06/08

ATmega16(L)

Transmission
Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other Masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 87 to Figure 93, circles are used to indicate that the TWINT Flag is set. The numbers in
the circles show the status code held in TWSR, with the prescaler bits masked to zero. At these
points, actions must be taken by the application to continue or complete the TWI transfer. The
TWI transfer is suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 74 to Table 77. Note that the prescaler bits are masked to zero in
these tables.

Master Transmitter
Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 86). In order to enter a Master mode, a START condition must be transmitted. The
format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-
mitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 86. Data Transfer in Master Transmitter Mode

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC

187
2466R–AVR–06/08

ATmega16(L)

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT Flag. The
TWI will then test the Two-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be $08 (See Table 74). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are $18, $20, or $38. The appropriate action to be taken for each of these status codes is
detailed in Table 74.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state $10) the Two-wire Serial Interface can access the
same Slave again, or a new Slave without transmitting a STOP condition. Repeated START
enables the Master to switch between Slaves, Master Transmitter mode and Master Receiver
mode without losing control of the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Table 74. Status Codes for Master Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

188
2466R–AVR–06/08

ATmega16(L)

$18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be Reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset

$20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$28 Data byte has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$30 Data byte has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$38 Arbitration lost in SLA+W or data
bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus be-
comes free

Table 74. Status Codes for Master Transmitter Mode

189
2466R–AVR–06/08

ATmega16(L)

Figure 87. Formats and States in the Master Transmitter Mode

Master Receiver Mode In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(see Figure 88). In order to enter a Master mode, a START condition must be transmitted. The
format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-
mitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

S

190
2466R–AVR–06/08

ATmega16(L)

Figure 88. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the Two-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be $08 (See Table 74). In order to enter MR mode,
SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are $38, $40, or $48. The appropriate action to be taken for each of these status codes is
detailed in Table 75. Received data can be read from the TWDR Register when the TWINT Flag
is set high by hardware. This scheme is repeated until the last byte has been received. After the
last byte has been received, the MR should inform the ST by sending a NACK after the last
received data byte. The transfer is ended by generating a STOP condition or a repeated START
condition. A STOP condition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state $10) the Two-wire Serial Interface can access the
same Slave again, or a new Slave without transmitting a STOP condition. Repeated START
enables the Master to switch between Slaves, Master Transmitter mode and Master Receiver
mode without losing control over the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Table 75. Status Codes for Master Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

191
2466R–AVR–06/08

ATmega16(L)

Figure 89. Formats and States in the Master Receiver Mode

$08 A START condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+R or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to masTer Transmitter mode

$38 Arbitration lost in SLA+R or NOT
ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

$40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

Table 75. Status Codes for Master Receiver Mode (Continued)

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

192
2466R–AVR–06/08

ATmega16(L)

Slave Receiver Mode In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 90). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

Figure 90. Data Transfer in Slave Receiver Mode

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address ($00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own Slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
Slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own Slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 76. The
Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see states $68 and $78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own Slave
address. However, the Two-wire Serial Bus is still monitored and address recognition may
resume at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily
isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle Mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own Slave address or the general call address
by using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared
(by writing it to one). Further data reception will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER

193
2466R–AVR–06/08

ATmega16(L)

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte
present on the bus when waking up from these sleep modes.

194
2466R–AVR–06/08

ATmega16(L)

Table 76. Status Codes for Slave Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$70 General call address has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$90 Previously addressed with
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$98 Previously addressed with
general call; data has been
received; NOT ACK has been
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$A0 A STOP condition or repeated
START condition has been
received while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

195
2466R–AVR–06/08

ATmega16(L)

Figure 91. Formats and States in the Slave Receiver Mode

Slave Transmitter
Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver
(see Figure 92). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

Figure 92. Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER

196
2466R–AVR–06/08

ATmega16(L)

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address ($00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own Slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
Slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own Slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 77. The
Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see state $B0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State $C0 or state $C8 will be entered, depending on whether the Master Receiver transmits
a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave mode, and
will ignore the Master if it continues the transfer. Thus the Master Receiver receives all “1” as
serial data. State $C8 is entered if the Master demands additional data bytes (by transmitting
ACK), even though the Slave has transmitted the last byte (TWEA zero and expecting NACK
from the Master).

While TWEA is zero, the TWI does not respond to its own Slave address. However, the Two-
wire Serial Bus is still monitored and address recognition may resume at any time by setting
TWEA. This implies that the TWEA bit may be used to temporarily isolate the TWI from the Two-
wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own Slave address or the general call address
by using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the
AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the
SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte
present on the bus when waking up from these sleep modes.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X

197
2466R–AVR–06/08

ATmega16(L)

Table 77. Status Codes for Slave Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$A8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$C0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$C8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

198
2466R–AVR–06/08

ATmega16(L)

Figure 93. Formats and States in the Slave Transmitter Mode

Miscellaneous States There are two status codes that do not correspond to a defined TWI state, see Table 78.

Status $F8 indicates that no relevant information is available because the TWINT Flag is not set.
This occurs between other states, and when the TWI is not involved in a serial transfer.

Status $00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is
transmitted.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 78. Miscellaneous States
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$F8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

$00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.

199
2466R–AVR–06/08

ATmega16(L)

Combining Several
TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated

2. The EEPROM must be instructed what location should be read

3. The reading must be performed

4. The transfer must be finished

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multi-master sys-
tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the
Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the Master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 94. Combining Several TWI Modes to Access a Serial EEPROM

Multi-master
Systems and
Arbitration

If multiple Masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the Masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
Masters are trying to transmit data to a Slave Receiver.

Figure 95. An Arbitration Example

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from Master to Slave Transmitted from Slave to Master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER
Device n

SDA

SCL

........ R1 R2

VCC

200
2466R–AVR–06/08

ATmega16(L)

Several different scenarios may arise during arbitration, as described below:

• Two or more Masters are performing identical communication with the same Slave. In this
case, neither the Slave nor any of the Masters will know about the bus contention.

• Two or more Masters are accessing the same Slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The Masters
trying to output a one on SDA while another Master outputs a zero will lose the arbitration.
Losing Masters will switch to not addressed Slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.

• Two or more Masters are accessing different Slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will
lose the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if
they are being addressed by the winning Master. If addressed, they will switch to SR or ST
mode, depending on the value of the READ/WRITE bit. If they are not being addressed, they
will switch to not addressed Slave mode or wait until the bus is free and transmit a new
START condition, depending on application software action.

This is summarized in Figure 96. Possible status values are given in circles.

Figure 96. Possible Status Codes Caused by Arbitration

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

201
2466R–AVR–06/08

ATmega16(L)

Analog
Comparator

The Analog Comparator compares the input values on the positive pin AIN0 and negative pin
AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator Output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 97.

Figure 97. Analog Comparator Block Diagram(2)

Notes: 1. See Table 80 on page 203.
2. Refer to Figure 1 on page 2 and Table 25 on page 58 for Analog Comparator pin placement.

Special Function IO
Register – SFIOR

• Bit 3 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog Comparator Multiplexed Input” on page 203.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

202
2466R–AVR–06/08

ATmega16(L)

Analog Comparator
Control and Status
Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-
ator. See “Internal Voltage Reference” on page 42.

• Bit 5 – ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator Interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
Input Capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the Input Capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the TICIE1 bit in the Timer Interrupt Mask
Register (TIMSK) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 79.

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

203
2466R–AVR–06/08

ATmega16(L)

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

Analog
Comparator
Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
SFIOR) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
80. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog
Comparator.

Table 79. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge

1 1 Comparator Interrupt on Rising Output Edge

Table 80. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

204
2466R–AVR–06/08

ATmega16(L)

Analog to
Digital
Converter

Features • 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ±2 LSB Absolute Accuracy
• 13 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• 8 Multiplexed Single Ended Input Channels
• 7 Differential Input Channels
• 2 Differential Input Ch annels with Optional Gain of 10x and 200x
• Optional Left adju stment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56V ADC Reference Voltage
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Co nversion Complete
• Sleep Mode Noise Canceler

The ATmega16 features a 10-bit successive approximation ADC. The ADC is connected to an
8-channel Analog Multiplexer which allows 8 single-ended voltage inputs constructed from the
pins of Port A. The single-ended voltage inputs refer to 0V (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs
(ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain stage, providing
amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage
before the A/D conversion. Seven differential analog input channels share a common negative
terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x
or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can be
expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 98.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than
±0.3 V from VCC. See the paragraph “ADC Noise Canceler” on page 211 on how to connect this
pin.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

205
2466R–AVR–06/08

ATmega16(L)

Figure 98. Analog to Digital Converter Block Schematic

Operation The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on
the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V reference voltage may be
connected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can
be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as
positive and negative inputs to the differential gain amplifier.

If differential channels are selected, the differential gain stage amplifies the voltage difference
between the selected input channel pair by the selected gain factor. This amplified value then

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

A
T

E

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+
-

SAMPLE & HOLD
COMPARATOR

INTERNAL 2.56V
REFERENCE

MUX DECODER

M
U

X
4

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

R
E

F
S

1

A
D

LA
R

+

-

C
H

A
N

N
E

L
S

E
LE

C
T

IO
N

G
A

IN
 S

E
LE

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER
OUTPUT

GAIN
AMPLIFIER

AREF

BANDGAP
REFERENCE

PRESCALER

SINGLE ENDED / DIFFERENTIAL SELECTION

GND

POS.
INPUT
MUX

NEG.
INPUT
MUX

TRIGGER
SELECT

ADTS[2:0]

INTERRUPT
FLAGS

START

206
2466R–AVR–06/08

ATmega16(L)

becomes the analog input to the ADC. If single ended channels are used, the gain amplifier is
bypassed altogether.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

Starting a
Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in SFIOR (see description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the global interrupt enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.

Figure 99. ADC Auto Trigger Logic

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLKADC

.

.

.

. EDGE
DETECTOR

ADATE

207
2466R–AVR–06/08

ATmega16(L)

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

Prescaling and
Conversion Timing

Figure 100. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. See “Differential Gain Channels” on
page 209 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of a first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In single conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place 2 ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic. When using Differential mode, along
with Auto triggering from a source other than the ADC Conversion Complete, each conversion

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START

208
2466R–AVR–06/08

ATmega16(L)

will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after
every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 81.

Figure 101. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 102. ADC Timing Diagram, Single Conversion

MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update MUX and REFS

Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold
MUX and REFS
Update

Conversion
Complete MUX and REFS

Update

209
2466R–AVR–06/08

ATmega16(L)

Figure 103. ADC Timing Diagram, Auto Triggered Conversion

Figure 104. ADC Timing Diagram, Free Running Conversion

Differential Gain
Channels

When using differential gain channels, certain aspects of the conversion need to be taken into
consideration.

Differential conversions are synchronized to the internal clock CKADC2 equal to half the ADC
clock. This synchronization is done automatically by the ADC interface in such a way that the
sample-and-hold occurs at a specific phase of CKADC2. A conversion initiated by the user (i.e., all

Table 81. ADC Conversion Time

Condition

Sample & Hold (Cycles
from Start of
Conversion) Conversion Time (Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

Normal conversions, differential 1.5/2.5 13/14

1 2 3 4 5 6 7 8 9 10 11 12 13

MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
Complete

Prescaler
Reset

ADATE

Prescaler
Reset

Sample & Hold

MUX and REFS
Update

11 12 13

MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update

210
2466R–AVR–06/08

ATmega16(L)

single conversions, and the first free running conversion) when CKADC2 is low will take the same
amount of time as a single ended conversion (13 ADC clock cycles from the next prescaled
clock cycle). A conversion initiated by the user when CKADC2 is high will take 14 ADC clock
cycles due to the synchronization mechanism. In Free Running mode, a new conversion is initi-
ated immediately after the previous conversion completes, and since CKADC2 is high at this time,
all automatically started (i.e., all but the first) free running conversions will take 14 ADC clock
cycles.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequencies may
be subjected to non-linear amplification. An external low-pass filter should be used if the input
signal contains higher frequency components than the gain stage bandwidth. Note that the ADC
clock frequency is independent of the gain stage bandwidth limitation. For example, the ADC
clock period may be 6 µs, allowing a channel to be sampled at 12 kSPS, regardless of the band-
width of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC
must be switched off between conversions. When Auto Triggering is used, the ADC prescaler is
reset before the conversion is started. Since the gain stage is dependent of a stable ADC clock
prior to the conversion, this conversion will not be valid. By disabling and then re-enabling the
ADC between each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended con-
versions are performed. The result from the extended conversions will be valid. See “Prescaling
and Conversion Timing” on page 207 for timing details.

Changing Channel
or Reference
Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Special care should be taken when changing differential channels. Once a differential channel
has been selected, the gain stage may take as much as 125 µs to stabilize to the new value.
Thus conversions should not be started within the first 125 µs after selecting a new differential
channel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing
ADC reference (by changing the REFS1:0 bits in ADMUX).

211
2466R–AVR–06/08

ATmega16(L)

ADC Input Channels When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accu-
racy due to the required settling time for the automatic offset cancellation circuitry. The user
should preferably disregard the first conversion result.

ADC Voltage
Reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is gener-
ated from the internal bandgap reference (VBG) through an internal amplifier. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can
also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high
impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 2.56V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than
indicated in Table 122 on page 297.

ADC Noise
Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion
Mode must be selected and the ADC conversion complete interrupt must be
enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption. If the ADC is enabled in such

212
2466R–AVR–06/08

ATmega16(L)

sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.

Analog Input Circuitry The Analog Input Circuitry for single ended channels is illustrated in Figure 105. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kΩ or less is recommended.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 105. Analog Input Circuitry

Analog Noise
Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

1. Keep analog signal paths as short as possible. Keep them well away from high-
speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply voltage
via an LC network as shown in Figure 106.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

ADCn

IIH

1..100 kΩ

CS/H= 14 pF

VCC/2

IIL

213
2466R–AVR–06/08

ATmega16(L)

Figure 106. ADC Power Connections

Offset Compensation
Schemes

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential mea-
surements as much as possible. The remaining offset in the analog path can be measured
directly by selecting the same channel for both differential inputs. This offset residue can be then
subtracted in software from the measurement results. Using this kind of software based offset
correction, offset on any channel can be reduced below one LSB.

ADC Accuracy
Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

G
N

D

V
C

C

P
A

0
(A

D
C

0)

P
A

1
(A

D
C

1)

P
A

2
(A

D
C

2)

P
A

3
(A

D
C

3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AVCC

GND

PC7

10
µ

H
10

0n
F

214
2466R–AVR–06/08

ATmega16(L)

Figure 107. Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

Figure 108. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error

215
2466R–AVR–06/08

ATmega16(L)

Figure 109. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the
interval between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0
LSB.

Figure 110. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
a range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared
to an ideal transition for any code. This is the compound effect of Offset, Gain Error,
Differential Error, Non-linearity, and Quantization Error. Ideal value: ±0.5 LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB

216
2466R–AVR–06/08

ATmega16(L)

ADC Conversion
Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 83 on page 217 and Table 84 on page 218). 0x000 represents ground, and 0x3FF repre-
sents the selected reference voltage minus one LSB.

If differential channels are used, the result is

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin,
GAIN the selected gain factor, and VREF the selected voltage reference. The result is presented
in two’s complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user
wants to perform a quick polarity check of the results, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If this bit is one, the result is negative, and if this bit is zero, the result is posi-
tive. Figure 111 shows the decoding of the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is
selected with a gain of GAIN and a reference voltage of VREF.

Figure 111. Differential Measurement Range

ADC
VIN 1024⋅

VREF
--------------------------=

ADC
VPOS VNEG–() GAIN 512⋅ ⋅

VREF
--=

0

Output Code

0x1FF

0x000

VREF/GAIN Differential Input
Voltage (Volts)

0x3FF

0x200

- VREF/GAIN

217
2466R–AVR–06/08

ATmega16(L)

Example:

ADMUX = 0xED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.

ADCR = 512 * 10 * (300 - 500) / 2560 = -400 = 0x270

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right adjusts
the result: ADCL = 0x70, ADCH = 0x02.

ADC Multiplexer
Selection Register –
ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 83. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-

Table 82. Correlation between Input Voltage and Output Codes

VADCn Read code Correspondi ng Decimal Value

 VADCm + VREF/GAIN 0x1FF 511

VADCm + 511/512 VREF/GAIN 0x1FF 511

VADCm + 510/512 VREF/GAIN 0x1FE 510

...

VADCm + 1/512 VREF/GAIN 0x001 1

VADCm 0x000 0

VADCm - 1/512 VREF/GAIN 0x3FF -1

...

VADCm - 511/512 VREF/GAIN 0x201 -511

VADCm - VREF/GAIN 0x200 -512

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 83. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

218
2466R–AVR–06/08

ATmega16(L)

sions. For a complete description of this bit, see “The ADC Data Register – ADCL and ADCH” on
page 220.

• Bits 4:0 – MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC.
These bits also select the gain for the differential channels. See Table 84 for details. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set).

Table 84. Input Channel and Gain Selections

MUX4..0
Single Ended
Input

Positive Differential
Input

Negative Differential
Input Gain

00000 ADC0

00001 ADC1

00010 ADC2

00011 ADC3 N/A

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000 ADC0 ADC0 10x

01001 ADC1 ADC0 10x

01010 ADC0 ADC0 200x

01011 ADC1 ADC0 200x

01100 ADC2 ADC2 10x

01101 ADC3 ADC2 10x

01110 ADC2 ADC2 200x

01111 ADC3 ADC2 200x

10000 ADC0 ADC1 1x

10001 ADC1 ADC1 1x

10010 N/A ADC2 ADC1 1x

10011 ADC3 ADC1 1x

10100 ADC4 ADC1 1x

10101 ADC5 ADC1 1x

10110 ADC6 ADC1 1x

10111 ADC7 ADC1 1x

11000 ADC0 ADC2 1x

11001 ADC1 ADC2 1x

11010 ADC2 ADC2 1x

11011 ADC3 ADC2 1x

11100 ADC4 ADC2 1x

219
2466R–AVR–06/08

ATmega16(L)

ADC Control and
Status Register A –
ADCSRA

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running Mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in SFIOR.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-
Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI
instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input clock to the
ADC.

11101 ADC5 ADC2 1x

11110 1.22 V (VBG) N/A

11111 0 V (GND)

Table 84. Input Channel and Gain Selections (Continued)

MUX4..0
Single Ended
Input

Positive Differential
Input

Negative Differential
Input Gain

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

220
2466R–AVR–06/08

ATmega16(L)

The ADC Data
Register – ADCL and
ADCH

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers. If differential
channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 216.

Table 85. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

221
2466R–AVR–06/08

ATmega16(L)

Special FunctionIO
Register – SFIOR

• Bit 7:5 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion
will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a trig-
ger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

• Bit 4 – Res: Reserved Bit

This bit is reserved for future use. To ensure compatibility with future devices, this bit must be
written to zero when SFIOR is written.

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 86. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

222
2466R–AVR–06/08

ATmega16(L)

JTAG Interface
and On-chip
Debug System

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories
– Extensive On-chip Debug Support for Break Conditions, Including
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Breakpoints on Single Address or Address Range
– Data Memory Breakpoints on Si ngle Address or Address Range

• Programming of Flash, EEPROM , Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio ®

Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip Debugging

A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections “Program-
ming via the JTAG Interface” on page 278 and “IEEE 1149.1 (JTAG) Boundary-scan” on page
228, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.

Figure 112 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI input and TDO output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used
for board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual Data Registers) is used for JTAG Serial Programming via the JTAG interface. The
Internal Scan Chain and Break Point Scan Chain are used for On-chip Debugging only.

Test Access Port –
TAP

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:

• TMS: Test Mode Select. This pin is used for navigating through the TAP-controller state
machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data
Register (Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction register or Data Register.

223
2466R–AVR–06/08

ATmega16(L)

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not
provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the
TAP controller is in reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP
input signals are internally pulled high and the JTAG is enabled for Boundary-scan and program-
ming. In this case, the TAP output pin (TDO) is left floating in states where the JTAG TAP
controller is not shifting data, and must therefore be connected to a pull-up resistor or other
hardware having pull-ups (for instance the TDI-input of the next device in the scan chain). The
device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

Figure 112. Block Diagram

TAP
CONTROLLER

TDI
TDO
TCK
TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Instruction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

A
N

A
L

O
G

P
E

R
IP

H
E

R
IA

L
U

N
IT

S

I/O PORT 0

I/O PORT n

BOUNDARY SCAN CHAIN

A
n

a
lo

g
 in

p
u

ts
C

o
n

tr
o

l &
 C

lo
ck

 li
n

e
s

DEVICE BOUNDARY

224
2466R–AVR–06/08

ATmega16(L)

Figure 113. TAP Controller State Diagram

TAP Controller The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 113 depend on the signal present on TMS (shown adjacent to each state tran-
sition) at the time of the rising edge at TCK. The initial state after a Power-On Reset is Test-
Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR
state. The MSB of the instruction is shifted in when this state is left by setting TMS high.
While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

225
2466R–AVR–06/08

ATmega16(L)

on the TDO pin. The JTAG Instruction selects a particular Data Register as path between
TDI and TDO and controls the circuitry surrounding the selected Data Register.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is
latched onto the parallel output from the Shift Register path in the Update-IR state. The Exit-
IR, Pause-IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift
Data Register – Shift-DR state. While in this state, upload the selected Data Register
(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI
input at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must
be held low during input of all bits except the MSB. The MSB of the data is shifted in when
this state is left by setting TMS high. While the Data Register is shifted in from the TDI pin,
the parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the
TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data
Register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.
Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be

entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”
on page 227.

Using the
Boundary-scan
Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1
(JTAG) Boundary-scan” on page 228.

Using the On-chip
Debug System

As shown in Figure 112, the hardware support for On-chip Debugging consists mainly of:

• A scan chain on the interface between the internal AVR CPU and the internal peripheral
units

• Break Point unit

• Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, 2 Pro-
gram Memory Break Points, and 2 combined Break Points. Together, the 4 Break Points can be
configured as either:

• 4 single Program Memory Break Points

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point

• 2 single Program Memory Break Points + 2 single Data Memory Break Points

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”)

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range
Break Point”)

226
2466R–AVR–06/08

ATmega16(L)

A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG
Instructions” on page 226.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip Debug system
to work. As a security feature, the On-chip Debug system is disabled when any Lock bits are set.
Otherwise, the On-chip Debug system would have provided a back-door into a secured device.

The AVR JTAG ICE from Atmel is a powerful development tool for On-chip Debugging of all
AVR 8-bit RISC Microcontrollers with IEEE 1149.1 compliant JTAG interface. The JTAG ICE
and the AVR Studio user interface give the user complete control of the internal resources of the
microcontroller, helping to reduce development time by making debugging easier. The JTAG
ICE performs real-time emulation of the microcontroller while it is running in a target system.

Please refer to the Support Tools section on the AVR pages on www.atmel.com for a full
description of the AVR JTEG ICE. AVR Studio can be downloaded free from Software section
on the same web site.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code breakpoints (using the BREAK instruc-
tion) and up to two data memory breakpoints, alternatively combined as a mask (range) Break
Point.

On-chip Debug
Specific JTAG
Instructions

The On-chip Debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

PRIVATE0; $8 Private JTAG instruction for accessing On-chip Debug system.

PRIVATE1; $9 Private JTAG instruction for accessing On-chip Debug system.

PRIVATE2; $A Private JTAG instruction for accessing On-chip Debug system.

PRIVATE3; $B Private JTAG instruction for accessing On-chip Debug system.

227
2466R–AVR–06/08

ATmega16(L)

On-chip Debug
Related Register in
I/O Memory

On-chip Debug
Register – OCDR

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an Internal Flag; I/O Debug Register Dirty – IDRD – is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Using the JTAG
Programming
Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUSR Register must be cleared to enable the
JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying

• EEPROM programming and verifying

• Fuse programming and verifying

• Lock bit programming and verifying

The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section “Programming via the JTAG Interface” on page 278.

Bibliography For more information about general Boundary-scan, the following literature can be consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley,
1992

Bit 7 6 5 4 3 2 1 0

MSB/IDRD LSB OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

228
2466R–AVR–06/08

ATmega16(L)

IEEE 1149.1
(JTAG)
Boundary-scan

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities Acco rding to the JTAG Standard
• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

System Overview The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be
used for testing the Printed Circuit Board. Initial scanning of the Data Register path will show the
ID-code of the device, since IDCODE is the default JTAG instruction. It may be desirable to have
the AVR device in Reset during Test mode. If not reset, inputs to the device may be determined
by the scan operations, and the internal software may be in an undetermined state when exiting
the Test mode. Entering reset, the outputs of any Port Pin will instantly enter the high impedance
state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction can be
issued to make the shortest possible scan chain through the device. The device can be set in
the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET instruc-
tion with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCSR must be
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher
than the internal chip frequency is possible. The chip clock is not required to run.

Data Registers The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain

Bypass Register The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR

229
2466R–AVR–06/08

ATmega16(L)

controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

Device Identification
Register

Figure 114 shows the structure of the Device Identification Register.

Figure 114. The Format of the Device Identification Register

Version Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on. However, some
revisions deviate from this rule, and the relevant version number is shown in Table 87.

Part Number The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega16 is listed in Table 88.

Manufacturer ID The Manufacturer ID is a 11 bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 89.

Reset Register The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-states Port
Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the External Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the Fuse set-
tings for the clock options, the part will remain reset for a Reset Time-Out Period (refer to “Clock
Sources” on page 25) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 115.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1 bit

Table 87. JTAG Version Numbers

Version JTAG Version Number (Hex)

ATmega16 revision G 0x6

ATmega16 revision H 0xE

ATmega16 revision I 0x8

ATmega16 revision J 0x9

ATmega16 revision K 0xA

ATmega16 revision L 0xB

Table 88. AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

ATmega16 0x9403

Table 89. Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL 0x01F

230
2466R–AVR–06/08

ATmega16(L)

Figure 115. Reset Register

Boundary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connections.

See “Boundary-scan Chain” on page 232 for a complete description.

Boundary-scan
Specific JTAG
Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG
instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction is not
implemented, but all outputs with tri-state capability can be set in high-impedant state by using
the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

EXTEST; $0 Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having Off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

IDCODE; $1 Optional JTAG instruction selecting the 32-bit ID-register as Data Register. The ID-register con-
sists of a version number, a device number and the manufacturer code chosen by JEDEC. This
is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE-register is sampled into the Boundary-scan Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

SAMPLE_PRELOAD;
$2

Mandatory JTAG instruction for pre-loading the output latches and talking a snap-shot of the
input/output pins without affecting the system operation. However, the output latches are not
connected to the pins. The Boundary-scan Chain is selected as Data Register.

D Q
From
TDI

ClockDR · AVR_RESET

To
TDO

From other Internal and
External Reset Sources

Internal Reset

231
2466R–AVR–06/08

ATmega16(L)

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

• Update-DR: Data from the Boundary-scan Chain is applied to the output latches. However,
the output latches are not connected to the pins.

AVR_RESET; $C The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or
releasing the JTAG Reset source. The TAP controller is not reset by this instruction. The one bit
Reset Register is selected as Data Register. Note that the reset will be active as long as there is
a logic 'one' in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS; $F Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundary-scan
Related Register in I/O
Memory

MCU Control and
Status Register –
MCUCSR

The MCU Control and Status Register contains control bits for general MCU functions, and pro-
vides information on which reset source caused an MCU Reset.

• Bit 7 – JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application
software must write this bit to the desired value twice within four cycles to change its value.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to
one. The reason for this is to avoid static current at the TDO pin in the JTAG interface.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

232
2466R–AVR–06/08

ATmega16(L)

Boundary-scan
Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connection.

Scanning the Digital
Port Pins

Figure 116 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The
cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn – function, and a
bi-directional pin cell that combines the three signals Output Control – OCxn, Output Data –
ODxn, and Input Data – IDxn, into only a two-stage Shift Register. The port and pin indexes are
not used in the following description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 117 shows a sim-
ple digital Port Pin as described in the section “I/O Ports” on page 50. The Boundary-scan
details from Figure 116 replaces the dashed box in Figure 117.

When no alternate port function is present, the Input Data – ID – corresponds to the PINxn Reg-
ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction – DD Register, and the Pull-up Enable – PUExn – cor-
responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 117 to make the
scan chain read the actual pin value. For Analog function, there is a direct connection from the
external pin to the analog circuit, and a scan chain is inserted on the interface between the digi-
tal logic and the analog circuitry.

Figure 116. Boundary-scan Cell for Bidirectional Port Pin with Pull-up Function.

D Q D Q

G

0

1
0

1

D Q D Q

G

0

1
0

1

0

1

0

1
D Q D Q

G

0

1

Port Pin (PXn)

VccEXTESTTo Next CellShiftDR

Output Control (OC)

Pullup Enable (PUE)

Output Data (OD)

Input Data (ID)

From Last Cell UpdateDRClockDR

FF2 LD2

FF1 LD1

LD0FF0

233
2466R–AVR–06/08

ATmega16(L)

Figure 117. General Port Pin Schematic Diagram(1)

Note: 1. See Boundary-scan description for details.

Boundary-scan and
the Two-wire Interface

The 2 Two-wire Interface pins SCL and SDA have one additional control signal in the scan-
chain; Two-wire Interface Enable – TWIEN. As shown in Figure 118, the TWIEN signal enables
a tri-state buffer with slew-rate control in parallel with the ordinary digital port pins. A general
scan cell as shown in Figure 122 is attached to the TWIEN signal.
Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordinary scan

support for digital port pins suffice for connectivity tests. The only reason for having TWIEN in
the scan path, is to be able to disconnect the slew-rate control buffer when doing boundary-
scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will lead to
drive contention.

CLK

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

CLK : I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

I/O

PUExn

OCxn

ODxn

IDxn

PUExn: PULLUP ENABLE for pin Pxn
OCxn: OUTPUT CONTROL for pin Pxn
ODxn: OUTPUT DATA to pin Pxn
IDxn: INPUT DATA from pin Pxn

234
2466R–AVR–06/08

ATmega16(L)

Figure 118. Additional Scan Signal for the Two-wire Interface

Scanning the RESET
Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high
logic for High Voltage Parallel Programming. An observe-only cell as shown in Figure 119 is
inserted both for the 5V reset signal; RSTT, and the 12V reset signal; RSTHV.

Figure 119. Observe-only Cell

Scanning the Clock
Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-
tor, External RC, External Clock, (High Frequency) Crystal Oscillator, Low Frequency Crystal
Oscillator, and Ceramic Resonator.

Figure 120 shows how each Oscillator with external connection is supported in the scan chain.
The Enable signal is supported with a general boundary-scan cell, while the Oscillator/Clock out-
put is attached to an observe-only cell. In addition to the main clock, the Timer Oscillator is
scanned in the same way. The output from the internal RC Oscillator is not scanned, as this
Oscillator does not have external connections.

Pxn

PUExn

ODxn

IDxn

TWIEN

OCxn

Slew-rate Limited

SRC

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

From System Pin To System Logic

FF1

235
2466R–AVR–06/08

ATmega16(L)

Figure 120. Boundary-scan Cells for Oscillators and Clock Options

Table 90 summaries the scan registers for the external clock pin XTAL1, Oscillators with
XTAL1/XTAL2 connections as well as 32 kHz Timer Oscillator.

Notes: 1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between

the Internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is
preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock
configuration is considered fixed for a given application. The user is advised to scan the same
clock option as to be used in the final system. The enable signals are supported in the scan
chain because the system logic can disable clock options in sleep modes, thereby disconnect-
ing the Oscillator pins from the scan path if not provided. The INTCAP Fuses are not
supported in the scan-chain, so the boundary scan chain can not make a XTAL Oscillator
requiring internal capacitors to run unless the fuse is correctly programmed.

Scanning the Analog
Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 121. The
Boundary-scan cell from Figure 122 is attached to each of these signals. The signals are
described in Table 91.

The Comparator need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

Table 90. Scan Signals for the Oscillators(1)(2)(3)

Enable Signal Scanned Clock Line Clock Option
Scanned Clock Line
when not Used

EXTCLKEN EXTCLK (XTAL1) External Clock 0

OSCON OSCCK External Crystal

External Ceramic
Resonator

0

RCOSCEN RCCK External RC 1

OSC32EN OSC32CK Low Freq. External Crystal 0

TOSKON TOSCK 32 kHz Timer Oscillator 0

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

T
o

S
ys

te
m

 L
og

ic

FF10

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

F
ro

m
 D

ig
ita

l L
og

ic

XTAL1/TOSC1 XTAL2/TOSC2

Oscillator

ENABLE OUTPUT

236
2466R–AVR–06/08

ATmega16(L)

Figure 121. Analog Comparator

Figure 122. General Boundary-scan Cell used for Signals for Comparator and ADC

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME

AC_IDLE

ACO

ADCEN

0

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

To Analog Circuitry/
To Digital Logic

From Digital Logic/
From Analog Ciruitry

237
2466R–AVR–06/08

ATmega16(L)

Scanning the ADC

Figure 123 shows a block diagram of the ADC with all relevant control and observe signals. The Boundary-scan cell from
Figure 122 is attached to each of these signals. The ADC need not be used for pure connectivity testing, since all analog
inputs are shared with a digital port pin as well.

Figure 123. Analog to Digital Converter

The signals are described briefly in Table 92.

Table 91. Boundary-scan Signals for the Analog Comparator

Signal
Name

Direction as Seen from
the Comparator Description

Recommended Input
when Not in Use

Output Values when
Recommended Inputs are Used

AC_IDLE Input Turns off Analog
comparator when true

1 Depends upon µC code being
executed

ACO Output Analog Comparator
Output

Will become input to µC
code being executed

0

ACME Input Uses output signal from
ADC mux when true

0 Depends upon µC code being
executed

ACBG Input Bandgap Reference
enable

0 Depends upon µC code being
executed

10-bit DAC +

-

AREF

PRECH

DACOUT

COMP

MUXEN_7
ADC_7

MUXEN_6
ADC_6

MUXEN_5
ADC_5

MUXEN_4
ADC_4

MUXEN_3
ADC_3

MUXEN_2
ADC_2

MUXEN_1
ADC_1

MUXEN_0
ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0
ADC_0

EXTCH

+

-

+

-
10x 20x

G10 G20

ST
ACLK

AMPEN

2.56V
ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

GNDEN

PASSEN

ACTEN

C
O

M
P

SCTEST
ADCBGEN

To Comparator

1.22V
ref AREF

238
2466R–AVR–06/08

ATmega16(L)

Table 92. Boundary-scan Signals for the ADC

Signal
Name

Direction as Seen
from the ADC Description

Recommended
Input when Not
in Use

Output Values when Recommended
Inputs are used, and CPU is not
Using the ADC

COMP Output Comparator Output 0 0

ACLK Input Clock signal to gain stages
implemented as Switch-cap filters

0 0

ACTEN Input Enable path from gain stages to
the comparator

0 0

ADCBGEN Input Enable Band-gap reference as
negative input to comparator

0 0

ADCEN Input Power-on signal to the ADC 0 0

AMPEN Input Power-on signal to the gain stages 0 0

DAC_9 Input Bit 9 of digital value to DAC 1 1

DAC_8 Input Bit 8 of digital value to DAC 0 0

DAC_7 Input Bit 7 of digital value to DAC 0 0

DAC_6 Input Bit 6 of digital value to DAC 0 0

DAC_5 Input Bit 5 of digital value to DAC 0 0

DAC_4 Input Bit 4 of digital value to DAC 0 0

DAC_3 Input Bit 3 of digital value to DAC 0 0

DAC_2 Input Bit 2 of digital value to DAC 0 0

DAC_1 Input Bit 1 of digital value to DAC 0 0

DAC_0 Input Bit 0 of digital value to DAC 0 0

EXTCH Input Connect ADC channels 0 - 3 to by-
pass path around gain stages

1 1

G10 Input Enable 10x gain 0 0

G20 Input Enable 20x gain 0 0

GNDEN Input Ground the negative input to
comparator when true

0 0

HOLD Input Sample&Hold signal. Sample
analog signal when low. Hold
signal when high. If gain stages
are used, this signal must go
active when ACLK is high.

1 1

IREFEN Input Enables Band-gap reference as
AREF signal to DAC

0 0

MUXEN_7 Input Input Mux bit 7 0 0

MUXEN_6 Input Input Mux bit 6 0 0

MUXEN_5 Input Input Mux bit 5 0 0

MUXEN_4 Input Input Mux bit 4 0 0

MUXEN_3 Input Input Mux bit 3 0 0

239
2466R–AVR–06/08

ATmega16(L)

Note: Incorrect setting of the switches in Figure 123 will make signal contention and may damage the part. There are several input
choices to the S&H circuitry on the negative input of the output comparator in Figure 123. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 92 should
be used. The user is recommended not to use the Differential Gain stages during scan. Switch-
cap based gain stages require fast operation and accurate timing which is difficult to obtain
when used in a scan chain. Details concerning operations of the differential gain stage is there-
fore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 123 with a successive approxi-
mation algorithm implemented in the digital logic. When used in Boundary-scan, the problem is
usually to ensure that an applied analog voltage is measured within some limits. This can easily
be done without running a successive approximation algorithm: apply the lower limit on the digi-
tal DAC[9:0] lines, make sure the output from the comparator is low, then apply the upper limit
on the digital DAC[9:0] lines, and verify the output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with
a digital port pin as well.

When using the ADC, remember the following:

• The Port Pin for the ADC channel in use must be configured to be an input with pull-up
disabled to avoid signal contention.

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when
enabling the ADC. The user is advised to wait at least 200 ns after enabling the ADC before

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1

NEGSEL_2 Input Input Mux for negative input for
differential signal, bit 2

0 0

NEGSEL_1 Input Input Mux for negative input for
differential signal, bit 1

0 0

NEGSEL_0 Input Input Mux for negative input for
differential signal, bit 0

0 0

PASSEN Input Enable pass-gate of gain stages. 1 1

PRECH Input Precharge output latch of
comparator. (Active low)

1 1

SCTEST Input Switch-cap TEST enable. Output
from x10 gain stage send out to
Port Pin having ADC_4

0 0

ST Input Output of gain stages will settle
faster if this signal is high first two
ACLK periods after AMPEN goes
high.

0 0

VCCREN Input Selects Vcc as the ACC reference
voltage.

0 0

Table 92. Boundary-scan Signals for the ADC (Continued)

Signal
Name

Direction as Seen
from the ADC Description

Recommended
Input when Not
in Use

Output Values when Recommended
Inputs are used, and CPU is not
Using the ADC

240
2466R–AVR–06/08

ATmega16(L)

controlling/observing any ADC signal, or perform a dummy conversion before using the first
result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal
low (Sample mode).

As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3 when
the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 92 are used unless other values are given in the algorithm
in Table 93. Only the DAC and Port Pin values of the Scan-chain are shown. The column
“Actions” describes what JTAG instruction to be used before filling the Boundary-scan Register
with the succeeding columns. The verification should be done on the data scanned out when
scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock fre-
quency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at
least five times the number of scan bits divided by the maximum hold time, thold,max.

Table 93. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Control

PA3.
Pullup_
Enable

1 SAMPLE
_PRELO
AD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6 Verify the
COMP bit
scanned
out to be
0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11 Verify the
COMP bit
scanned
out to be
1

1 0x200 0x08 1 1 0 0 0

The lower limit is: 1024 1,5V 0,95 5V⁄⋅ ⋅ 291 0x123= =
The upper limit is: 1024 1,5V 1,05 5V⁄⋅ ⋅ 323 0x143= =

241
2466R–AVR–06/08

ATmega16(L)

ATmega16
Boundary-scan
Order

Table 94 shows the scan order between TDI and TDO when the Boundary-scan chain is
selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The
scan order follows the pin-out order as far as possible. Therefore, the bits of Port A is scanned in
the opposite bit order of the other ports. Exceptions from the rules are the Scan chains for the
analog circuits, which constitute the most significant bits of the scan chain regardless of which
physical pin they are connected to. In Figure 116, PXn. Data corresponds to FF0, PXn. Control
corresponds to FF1, and PXn. Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is
not in the scan chain, since these pins constitute the TAP pins when the JTAG is enabled.

Table 94. ATmega16 Boundary-scan Order

Bit Number Signal Name Module

140 AC_IDLE Comparator

139 ACO

138 ACME

137 ACBG

136 COMP ADC

135 PRIVATE_SIGNAL1(1)

134 ACLK

133 ACTEN

132 PRIVATE_SIGNAL2(2)

131 ADCBGEN

130 ADCEN

129 AMPEN

128 DAC_9

127 DAC_8

126 DAC_7

125 DAC_6

124 DAC_5

123 DAC_4

122 DAC_3

121 DAC_2

120 DAC_1

119 DAC_0

118 EXTCH

117 G10

116 G20

115 GNDEN

114 HOLD

113 IREFEN

112 MUXEN_7

242
2466R–AVR–06/08

ATmega16(L)

111 MUXEN_6

110 MUXEN_5

109 MUXEN_4

108 MUXEN_3

107 MUXEN_2

106 MUXEN_1

105 MUXEN_0

104 NEGSEL_2

103 NEGSEL_1

102 NEGSEL_0

101 PASSEN

100 PRECH

99 SCTEST

98 ST

97 VCCREN

96 PB0.Data Port B

95 PB0.Control

94 PB0.Pullup_Enable

93 PB1.Data

92 PB1.Control

91 PB1.Pullup_Enable

90 PB2.Data

89 PB2.Control

88 PB2.Pullup_Enable

87 PB3.Data

86 PB3.Control

85 PB3.Pullup_Enable

84 PB4.Data

83 PB4.Control

82 PB4.Pullup_Enable

81 PB5.Data

80 PB5.Control

79 PB5.Pullup_Enable

78 PB6.Data

77 PB6.Control

76 PB6.Pullup_Enable

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module

243
2466R–AVR–06/08

ATmega16(L)

75 PB7.Data

74 PB7.Control

73 PB7.Pullup_Enable

72 RSTT Reset Logic
(Observe-Only)

71 RSTHV

70 EXTCLKEN Enable signals for main clock/Oscillators

69 OSCON

68 RCOSCEN

67 OSC32EN

66 EXTCLK (XTAL1) Clock input and Oscillators for the main clock
(Observe-Only)

65 OSCCK

64 RCCK

63 OSC32CK

62 TWIEN TWI

61 PD0.Data Port D

60 PD0.Control

59 PD0.Pullup_Enable

58 PD1.Data

57 PD1.Control

56 PD1.Pullup_Enable

55 PD2.Data

54 PD2.Control

53 PD2.Pullup_Enable

52 PD3.Data

51 PD3.Control

50 PD3.Pullup_Enable

49 PD4.Data

48 PD4.Control

47 PD4.Pullup_Enable

46 PD5.Data

45 PD5.Control

44 PD5.Pullup_Enable

43 PD6.Data

42 PD6.Control

41 PD6.Pullup_Enable

40 PD7.Data

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module

244
2466R–AVR–06/08

ATmega16(L)

39 PD7.Control

38 PD7.Pullup_Enable

37 PC0.Data Port C

36 PC0.Control

35 PC0.Pullup_Enable

34 PC1.Data

33 PC1.Control

32 PC1.Pullup_Enable

31 PC6.Data

30 PC6.Control

29 PC6.Pullup_Enable

28 PC7.Data

27 PC7.Control

26 PC7.Pullup_Enable

25 TOSC 32 kHz Timer Oscillator

24 TOSCON

23 PA7.Data Port A

22 PA7.Control

21 PA7.Pullup_Enable

20 PA6.Data

19 PA6.Control

18 PA6.Pullup_Enable

17 PA5.Data

16 PA5.Control

15 PA5.Pullup_Enable

14 PA4.Data

13 PA4.Control

12 PA4.Pullup_Enable

11 PA3.Data

10 PA3.Control

9 PA3.Pullup_Enable

8 PA2.Data

7 PA2.Control

6 PA2.Pullup_Enable

5 PA1.Data

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module

245
2466R–AVR–06/08

ATmega16(L)

Notes: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.
2. PRIVATE:SIGNAL2 should always be scanned in as zero.

Boundary-scan
Description
Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in
a standard format used by automated test-generation software. The order and function of bits in
the Boundary-scan Data Register are included in this description. A BSDL file for ATmega16 is
available.

4 PA1.Control

3 PA1.Pullup_Enable

2 PA0.Data

1 PA0.Control

0 PA0.Pullup_Enable

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module

246
2466R–AVR–06/08

ATmega16(L)

Boot Loader
Support – Read-
While-Write
Self-
Programming

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the Program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with Fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection.

Features • Read-While-Write Self-Programming
• Flexible Boot Memory size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page (1) Size
• Code Efficien t Algorithm
• Efficient Read-Mod ify-Write Support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 107 on page 262)
used during programming. The page organization does not affect normal operation.

Application and
Boot Loader Flash
Sections

The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 125). The size of the different sections is configured by the BOOTSZ
Fuses as shown in Table 100 on page 257 and Figure 125. These two sections can have differ-
ent level of protection since they have different sets of Lock bits.

Application Section The Application section is the section of the Flash that is used for storing the application code.
The protection level for the application section can be selected by the Application Boot Lock bits
(Boot Lock bits 0), see Table 96 on page 249. The Application section can never store any Boot
Loader code since the SPM instruction is disabled when executed from the Application section.

BLS – Boot Loader
Section

While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (Boot Lock bits 1), see Table 97 on page 249.

Read-While-Write
and no Read-
While-Write Flash
Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 101
on page 257 and Figure 125 on page 248. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during
the entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

247
2466R–AVR–06/08

ATmega16(L)

RWW – Read-While-
Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control Register (SPMCR) will be read as logical
one as long as the RWW section is blocked for reading. After a programming is completed, the
RWWSB must be cleared by software before reading code located in the RWW section. See
“Store Program Memory Control Register – SPMCR” on page 250. for details on how to clear
RWWSB.

NRWW – No Read-
While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire page erase or page write operation.

Figure 124. Read-While-Write vs. No Read-While-Write

Table 95. Read-While-Write Features

Which Section does the Z-
pointer Address during the

Programming?

Which Section can be
Read during

Programming?
Is the CPU

Halted?

Read-While-
Write

Supported?

RWW section NRWW section No Yes

NRWW section None Yes No

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
during the Operation

Code Located in
NRWW Section
Can be Read during
the Operation

248
2466R–AVR–06/08

ATmega16(L)

Figure 125. Memory Sections(1)

Note: 1. The parameters in the figure above are given in Table 100 on page 257.

Boot Loader Lock
Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU

• To protect only the Boot Loader Flash section from a software update by the MCU

• To protect only the Application Flash section from a software update by the MCU

• Allow software update in the entire Flash

See Table 96 and Table 97 for further details. The Boot Lock bits can be set in software and in
Serial or Parallel Programming mode, but they can be cleared by a Chip Erase command only.
The general Write Lock (Lock Bit mode 2) does not control the programming of the Flash mem-
ory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 3) does not
control reading nor writing by LPM/SPM, if it is attempted.

$0000

Flashend

Program Memory
BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory
BOOTSZ = '10'

$0000

Program Memory
BOOTSZ = '01'

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

$0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

$0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader

249
2466R–AVR–06/08

ATmega16(L)

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Entering the Boot
Loader Program

Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.

Table 96. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

Table 97. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section,
and LPM executing from the Application section is not
allowed to read from the Boot Loader section. If interrupt
vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed
to read from the Boot Loader section. If interrupt vectors
are placed in the Application section, interrupts are
disabled while executing from the Boot Loader section.

250
2466R–AVR–06/08

ATmega16(L)

Note: 1. “1” means unprogrammed, “0” means programmed

Store Program
Memory Control
Register – SPMCR

The Store Program Memory Control Register contains the control bits needed to control the Boot
Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a self-programming (Page Erase or Page Write) operation to the RWW section is initiated,
the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section can-
not be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the ATmega16 and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a page erase or a page write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits, according to the data in R0. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock
bit set, or if no SPM instruction is executed within four clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR Regis-
ter, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the Fuse and Lock Bits from Software” on page 254 for
details.

Table 98. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application reset (address $0000)

0 Reset Vector = Boot Loader reset (see Table 100 on page 257)

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

251
2466R–AVR–06/08

ATmega16(L)

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit
will auto-clear upon completion of a page write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire page write operation if the NRWW section is
addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a page erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
page write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During page erase and page write,
the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.

Addressing the
Flash during Self-
Programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 107 on page 262), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 126. Note that the Page Erase and Page Write operations are addressed
independently. Therefore it is of major importance that the Boot Loader software addresses the
same page in both the Page Erase and Page Write operation. Once a programming operation is
initiated, the address is latched and the Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation. The LPM
instruction does also use the Z pointer to store the address. Since this instruction addresses the
Flash byte by byte, also the LSB (bit Z0) of the Z-pointer is used.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

252
2466R–AVR–06/08

ATmega16(L)

Figure 126. Addressing the Flash during SPM(1)

Notes: 1. The different variables used in Figure 126 are listed in Table 102 on page 258.
2. PCPAGE and PCWORD are listed in Table 107 on page 262.

Self-Programming
the Flash

The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the page
erase command or between a page erase and a page write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the page erase and page write operation is addressing the same
page. See “Simple Assembly Code Example for a Boot Loader” on page 256 for an assembly
code example.

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

253
2466R–AVR–06/08

ATmega16(L)

Performing Page
Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer must
be written zero during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the page erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filling the Temporary
Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCR and execute SPM within four clock cycles after writing SPMCR. The con-
tent of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a page write operation or by writing the RWWSRE bit in
SPMCR. It is also erased after a system reset. Note that it is not possible to write more than one
time to each address without erasing the temporary buffer.
Note: If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

Performing a Page
Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written zero
during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using the SPM
Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCR is cleared. This means that the interrupt can be used instead of polling
the SPMCR Register in software. When using the SPM interrupt, the Interrupt Vectors should be
moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 45.

Consideration while
Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

Prevent Reading the
RWW Section during
Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the Self-Programming operation. The RWWSB in the SPMCR will be set as long as the RWW
section is busy. During self-programming the Interrupt Vector table should be moved to the BLS
as described in “Interrupts” on page 45, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on
page 256 for an example.

254
2466R–AVR–06/08

ATmega16(L)

Setting the Boot
Loader Lock Bits by
SPM

To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The only accessible Lock bits are the
Boot Lock bits that may prevent the Application and Boot Loader section from any software
update by the MCU.

See Table 96 and Table 97 for how the different settings of the Boot Loader bits affect the Flash
access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with $0001 (same as used for reading the Lock bits). For future compatibility It
is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the Lock bits. When pro-
gramming the Lock bits the entire Flash can be read during the operation.

EEPROM Write
Prevents Writing to
SPMCR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCR Register.

Reading the Fuse and
Lock Bits from
Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with $0001 and set the BLBSET and SPMEN bits in SPMCR. When an LPM instruction
is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCR, the
value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN bits
will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low bits is similar to the one described above for reading the
Lock bits. To read the Fuse Low bits, load the Z-pointer with $0000 and set the BLBSET and
SPMEN bits in SPMCR. When an LPM instruction is executed within three cycles after the BLB-
SET and SPMEN bits are set in the SPMCR, the value of the Fuse Low bits (FLB) will be loaded
in the destination register as shown below. Refer to Table 106 on page 261 for a detailed
description and mapping of the Fuse Low bits.

Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCR,
the value of the Fuse High bits (FHB) will be loaded in the destination register as shown below.
Refer to Table 105 on page 260 for detailed description and mapping of the Fuse High bits.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

Preventing Flash
Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is too
low for the CPU and the Flash to operate properly. These issues are the same as for board level
systems using the Flash, and the same design solutions should be applied.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

255
2466R–AVR–06/08

ATmega16(L)

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC Reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down Sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCR Register and thus the Flash from unintentional writes.

Programming Time for
Flash when using SPM

The Calibrated RC Oscillator is used to time Flash accesses. Table 99 shows the typical pro-
gramming time for Flash accesses from the CPU.

Table 99. SPM Programming Time.

Symbol Min Programming Ti me Max Programming Time

Flash write (Page Erase, Page
Write, and write Lock bits by SPM)

3.7 ms 4.5 ms

256
2466R–AVR–06/08

ATmega16(L)

Simple Assembly
Code Example for a
Boot Loader

;-the routine writes one page of data from RAM to Flash

; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z pointer

;-error handling is not included

;-the routine must be placed inside the boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can

; be read during self-programming (page erase and page write).

;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)

; storing and restoring of registers is not included in the routine

; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot

; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ; PAGESIZEB is page size in BYTES, not
; words

.org SMALLBOOTSTART

Write_page:
; page erase

ldi spmcrval, (1<<PGERS) | (1<<SPMEN)

call Do_spm

; re-enable the RWW section

ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable

ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+

ld r1, Y+

ldi spmcrval, (1<<SPMEN)
call Do_spm

adiw ZH:ZL, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute page write
subi ZL, low(PAGESIZEB) ;restore pointer

sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256

ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section

ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable

ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:

lpm r0, Z+
ld r1, Y+

cpse r0, r1

jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256

brne Rdloop

; return to RWW section

; verify that RWW section is safe to read

Return:
in temp1, SPMCR

257
2466R–AVR–06/08

ATmega16(L)

sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not
; ready yet

ret

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)

call Do_spm

rjmp Return

Do_spm:

; check for previous SPM complete
Wait_spm:

in temp1, SPMCR

sbrc temp1, SPMEN
rjmp Wait_spm

; input: spmcrval determines SPM action

; disable interrupts if enabled, store status
in temp2, SREG

cli

; check that no EEPROM write access is present
Wait_ee:

sbic EECR, EEWE

rjmp Wait_ee
; SPM timed sequence

out SPMCR, spmcrval

spm
; restore SREG (to enable interrupts if originally enabled)

out SREG, temp2

ret

ATmega16 Boot
Loader Parameters

In Table 100 through Table 102, the parameters used in the description of the self programming
are given.

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 125

Note: 1. For details about these two section, see “NRWW – No Read-While-Write Section” on page
247 and “RWW – Read-While-Write Section” on page 247

Table 100. Boot Size Configuration(1)

BOOTSZ1 BOOTSZ0
Boot
Size Pages

Application
Flash
Section

Boot
Loader
Flash
Section

End
Application
section

Boot Reset
Address
(start Boot
Loader
Section)

1 1
128
words

2
$0000 -
$1F7F

$1F80 -
$1FFF

$1F7F $1F80

1 0
256
words

4
$0000 -
$1EFF

$1F00 -
$1FFF

$1EFF $1F00

0 1
512
words

8
$0000 -
$1DFF

$1E00 -
$1FFF

$1DFF $1E00

0 0
1024
words

16
$0000 -
$1BFF

$1C00 -
$1FFF

$1BFF $1C00

Table 101. Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 112 $0000 - $1BFF

No Read-While-Write section (NRWW) 16 $1C00 - $1FFF

258
2466R–AVR–06/08

ATmega16(L)

Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash during Self-Programming” on page 251 for details about the use of
Z-pointer during Self-Programming.

Table 102. Explanation of Different Variables used in Figure 126 and the Mapping to the Z-
pointer

Variable
Corresponding

Z-value (1) Description

PCMSB
12 Most significant bit in the Program Counter.

(The Program Counter is 13 bits PC[12:0])

PAGEMSB
5 Most significant bit which is used to address the

words within one page (64 words in a page
requires 6 bits PC [5:0]).

ZPCMSB
Z13 Bit in Z-register that is mapped to PCMSB.

Because Z0 is not used, the ZPCMSB equals
PCMSB + 1.

ZPAGEMSB
Z6 Bit in Z-register that is mapped to PAGEMSB.

Because Z0 is not used, the ZPAGEMSB
equals PAGEMSB + 1.

PCPAGE
PC[12:6] Z13:Z7 Program Counter page address: Page select,

for Page Erase and Page Write

PCWORD
PC[5:0] Z6:Z1 Program Counter word address: Word select,

for filling temporary buffer (must be zero during
page write operation)

259
2466R–AVR–06/08

ATmega16(L)

Memory
Programming

Program And Data
Memory Lock Bits

The ATmega16 provides six Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 104. The Lock bits can only be
erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 103. Lock Bit Byte(1)

Lock Bit Byte Bit No. De scription Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 104. Lock Bit Protection Modes

Memory Lock Bits (2) Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is
disabled in Parallel and SPI/JTAG Serial Programming
mode. The Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and
EEPROM is disabled in Parallel and SPI/JTAG Serial
Programming mode. The Fuse bits are locked in both
Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

BLB1 Mode BLB12 BLB11

260
2466R–AVR–06/08

ATmega16(L)

Notes: 1. Program the Fuse bits before programming the Lock bits.
2. “1” means unprogrammed, “0” means programmed

Fuse Bits The ATmega16 has two fuse bytes. Table 105 and Table 106 describe briefly the functionality of
all the fuses and how they are mapped into the fuse bytes. Note that the fuses are read as logi-
cal zero, “0”, if they are programmed.

Notes: 1. The SPIEN Fuse is not accessible in SPI Serial Programming mode.
2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits. See See “Clock

Sources” on page 25. for details.
3. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 100 on page 257.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits

and the JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system
to be running in all sleep modes. This may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This
to avoid static current at the TDO pin in the JTAG interface.

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section,
and LPM executing from the Application section is not
allowed to read from the Boot Loader section. If interrupt
vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed
to read from the Boot Loader section. If interrupt vectors
are placed in the Application section, interrupts are
disabled while executing from the Boot Loader section.

Table 104. Lock Bit Protection Modes (Continued)

Memory Lock Bits (2) Protection Type

Table 105. Fuse High Byte

Fuse High
Byte

Bit
No. Description Default Value

OCDEN(4) 7 Enable OCD 1 (unprogrammed, OCD disabled)

JTAGEN(5) 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(1) 5
Enable SPI Serial Program and
Data Downloading

0 (programmed, SPI prog. enabled)

CKOPT(2) 4 Oscillator options 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed, EEPROM not
preserved)

BOOTSZ1 2
Select Boot Size (see Table 100
for details) 0 (programmed)(3)

BOOTSZ0 1
Select Boot Size (see Table 100
for details) 0 (programmed)(3)

BOOTRST 0 Select reset vector 1 (unprogrammed)

261
2466R–AVR–06/08

ATmega16(L)

Notes: 1. The default value of SUT1..0 results in maximum start-up time. SeeTable 10 on page 29 for
details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 1MHz. See Table 2 on
page 25 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

Latching of Fuses The Fuse values are latched when the device enters programming mode and changes of the
Fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

Signature Bytes All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

For the ATmega16 the signature bytes are:

1. $000: $1E (indicates manufactured by Atmel)

2. $001: $94 (indicates 16KB Flash memory)

3. $002: $03 (indicates ATmega16 device when $001 is $94)

Calibration Byte The ATmega16 stores four different calibration values for the internal RC Oscillator. These bytes
resides in the signature row High Byte of the addresses 0x0000, 0x0001, 0x0002, and 0x0003
for 1, 2, 4, and 8 Mhz respectively. During Reset, the 1 MHz value is automatically loaded into
the OSCCAL Register. If other frequencies are used, the calibration value has to be loaded
manually, see “Oscillator Calibration Register – OSCCAL” on page 30 for details.

Table 106. Fuse Low Byte

Fuse Low
Byte

Bit
No. Description Default Value

BODLEVEL 7 Brown-out Detector trigger level 1 (unprogrammed)

BODEN 6 Brown-out Detector enable 1 (unprogrammed, BOD disabled)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 0 (programmed)(2)

CKSEL0 0 Select Clock source 1 (unprogrammed)(2)

262
2466R–AVR–06/08

ATmega16(L)

Page Size

Parallel
Programming
Parameters, Pin
Mapping, and
Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATmega16. Pulses are assumed to be at
least 250 ns unless otherwise noted.

Signal Names In this section, some pins of the ATmega16 are referenced by signal names describing their
functionality during parallel programming, see Figure 127 and Table 109. Pins not described in
the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 111.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 112.

Figure 127. Parallel Programming

Table 107. No. of Words in a Page and no. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

8K words (16K bytes) 64 words PC[5:0] 128 PC[12:6] 12

Table 108. No. of Words in a Page and no. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PB7 - PB0 DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+5V

263
2466R–AVR–06/08

ATmega16(L)

Table 109. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready
for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1” selects
High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load

BS2 PA0 I
Byte Select 2 (“0” selects Low byte, “1” selects
2’nd High byte)

DATA PB7-0 I/O Bidirectional Data bus (Output when OE is low)

Table 110. Pin Values used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 111. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1)

0 1 Load Data (High or Low data byte for Flash determined by BS1)

1 0 Load Command

1 1 No Action, Idle

Table 112. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse Bits

0010 0000 Write Lock Bits

0001 0000 Write Flash

0001 0001 Write EEPROM

264
2466R–AVR–06/08

ATmega16(L)

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 112. Command Byte Bit Coding

Command Byte Command Executed

265
2466R–AVR–06/08

ATmega16(L)

Parallel
Programming

Enter Programming
Mode

The following algorithm puts the device in Parallel Programming mode:

1. Apply 4.5 - 5.5V between VCC and GND, and wait at least 100 µs.

2. Set RESET to “0” and toggle XTAL1 at least 6 times

3. Set the Prog_enable pins listed in Table 110 on page 263 to “0000” and wait at least 100
ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after +12V
has been applied to RESET, will cause the device to fail entering Programming mode.

Note, if External Crystal or External RC configuration is selected, it may not be possible to apply
qualified XTAL1 pulses. In such cases, the following algorithm should be followed:

1. Set Prog_enable pins listed in Table 110 on page 263 to “0000”.

2. Apply 4.5 - 5.5V between VCC and GND simultaneously as 11.5 - 12.5V is applied to
RESET.

3. Wait 100 µs.

4. Re-program the fuses to ensure that External Clock is selected as clock source
(CKSEL3:0 = 0b0000) If Lock bits are programmed, a Chip Erase command must be
executed before changing the fuses.

5. Exit Programming mode by power the device down or by bringing RESET pin to 0b0.

6. Entering Programming mode with the original algorithm, as described above.

Considerations for
Efficient Programming

The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory
locations.

• Skip writing the data value $FF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address High byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading.

Chip Erase The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or the EEPROM are
reprogrammed.
Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

Programming the
Flash

The Flash is organized in pages, see Table 107 on page 262. When programming the Flash, the
program data is latched into a page buffer. This allows one page of program data to be pro-

266
2466R–AVR–06/08

ATmega16(L)

grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address Low byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address Low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data Low byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data High byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 129 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 128 on page 267. Note that if less than
8 bits are required to address words in the page (pagesize < 256), the most significant bit(s) in
the address Low byte are used to address the page when performing a page write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address High byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address High byte.

H. Program Page

1. Set BS1 = “0”

2. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

3. Wait until RDY/BSY goes high. (See Figure 129 for signal waveforms)

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

267
2466R–AVR–06/08

ATmega16(L)

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.

Figure 128. Addressing the Flash which is Organized in Pages

Note: 1. PCPAGE and PCWORD are listed in Table 107 on page 262.

Figure 129. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

$10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

268
2466R–AVR–06/08

ATmega16(L)

Programming the
EEPROM

The EEPROM is organized in pages, see Table 108 on page 262. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the Flash” on page 265 for details on Command, Address and
Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. C: Load Data ($00 - $FF)

5. E: Latch data (give PAGEL a positive pulse)

K: Repeat 3 through 5 until the entire buffer is filled

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page. (See Figure 130 for
signal waveforms)

Figure 130. Programming the EEPROM Waveforms

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 265 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The Flash word Low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word High byte can now be read at DATA.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

269
2466R–AVR–06/08

ATmega16(L)

6. Set OE to “1”.

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 265 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

Programming the
Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 265 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “0” and BS2 to “0”.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

Programming the
Fuse High Bits

The algorithm for programming the Fuse high bits is as follows (refer to “Programming the Flash”
on page 265 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Figure 131. Programming the Fuses

RDY/BSY

WR

OE

RESET +12V

PAGEL

$40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

$40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

BS2

270
2466R–AVR–06/08

ATmega16(L)

Programming the Lock
Bits

The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on
page 265 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and
Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash”
on page 265 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

5. Set OE to “1”.

Figure 132. Mapping between BS1, BS2 and the Fuse- and Lock Bits during Read

Reading the Signature
Bytes

The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on
page 265 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte ($00 - $02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

Reading the
Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on
page 265 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, $00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Fuse Low Byte

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

271
2466R–AVR–06/08

ATmega16(L)

Parallel Programming
Characteristics

Figure 133. Parallel Programming Timing, Including some General Timing Requirements

Figure 134. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 133 (i.e., tDVXH, tXHXL, and tXLDX) also apply to load-
ing operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWL WH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
t BVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

272
2466R–AVR–06/08

ATmega16(L)

Figure 135. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 133 (i.e., tDVXH, tXHXL, and tXLDX) also apply to read-
ing operation.

Table 113. Parallel Programming Characteristics, VCC = 5 V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

273
2466R–AVR–06/08

ATmega16(L)

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

Serial
Downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input), and MISO
(output). After RESET is set low, the Programming Enable instruction needs to be executed first
before program/erase operations can be executed. NOTE, in Table 114 on page 273, the pin
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal
SPI interface.

SPI Serial
Programming Pin
Mapping

Figure 136. SPI Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the Internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC -0.3V < AVCC < VCC +0.3V, however, AVCC should always be within 2.7 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the serial mode ONLY) and there is no need to first execute the Chip Erase instruc-

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 113. Parallel Programming Characteristics, VCC = 5 V ± 10% (Continued)

Symbol Parameter Min Typ Max Units

Table 114. Pin Mapping SPI Serial Programming

Symbol Pins I/O Description

MOSI PB5 I Serial Data in

MISO PB6 O Serial Data out

SCK PB7 I Serial Clock

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

PB5

PB6

PB7

+2.7 - 5.5V

AVCC

+2.7 - 5.5V(2)

274
2466R–AVR–06/08

ATmega16(L)

tion. The Chip Erase operation turns the content of every memory location in both the Program
and EEPROM arrays into $FF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

High:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

SPI Serial
Programming
Algorithm

When writing serial data to the ATmega16, data is clocked on the rising edge of SCK.

When reading data from the ATmega16, data is clocked on the falling edge of SCK. See Figure
138 for timing details.

To program and verify the ATmega16 in the SPI Serial Programming mode, the following
sequence is recommended (See four byte instruction formats in Figure 116 on page 276):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable SPI Serial Programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The SPI Serial Programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte ($53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the $53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The page size is found in Table 107 on page
262. The memory page is loaded one byte at a time by supplying the 6 LSB of the
address and data together with the Load Program Memory Page instruction. To ensure
correct loading of the page, the data Low byte must be loaded before data High byte is
applied for a given address. The Program Memory Page is stored by loading the Write
Program Memory Page instruction with the 7 MSB of the address. If polling is not used,
the user must wait at least tWD_FLASH before issuing the next page. (See Table 115).
Accessing the SPI Serial Programming interface before the Flash write operation com-
pletes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and data
together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling is not used, the user must wait
at least tWD_EEPROM before issuing the next byte. (See Table 115). In a chip erased device,
no $FFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

Data Polling Flash When a page is being programmed into the Flash, reading an address location within the page
being programmed will give the value $FF. At the time the device is ready for a new page, the
programmed value will read correctly. This is used to determine when the next page can be writ-

275
2466R–AVR–06/08

ATmega16(L)

ten. Note that the entire page is written simultaneously and any address within the page can be
used for polling. Data polling of the Flash will not work for the value $FF, so when programming
this value, the user will have to wait for at least tWD_FLASH before programming the next page. As
a chip erased device contains $FF in all locations, programming of addresses that are meant to
contain $FF, can be skipped. See Table 115 for tWD_FLASH value

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value $FF. At the time the device is ready for a
new byte, the programmed value will read correctly. This is used to determine when the next
byte can be written. This will not work for the value $FF, but the user should have the following in
mind: As a chip erased device contains $FF in all locations, programming of addresses that are
meant to contain $FF, can be skipped. This does not apply if the EEPROM is re-programmed
without chip erasing the device. In this case, data polling cannot be used for the value $FF, and
the user will have to wait at least tWD_EEPROM before programming the next byte. See Table 115
for tWD_EEPROM value.

276
2466R–AVR–06/08

ATmega16(L)

Serial Programming
Instruction set

Table 116 on page 276 and Figure 137 on page 277 describes the Instruction set.

Table 115. Minimum Wait Delay before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FUSE 4.5 ms

tWD_FLASH 4.5 ms

tWD_EEPROM 9.0 ms

tWD_ERASE 9.0 ms

Table 116. Serial Programming Instruction Set (Hexadecimal values)

Instruction (1)/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 adr MSB adr LSB high data byte in

Load Program Memory Page, Low byte $40 adr MSB adr LSB low data byte in

Load EEPROM Memory Page (page access)(1) $C1 $00 adr LSB data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 adr MSB adr LSB data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $0b00 000bb data byte out

Write Instructions

Write Program Memory Page $4C 000a aaaa aa00 0000 $00

Write EEPROM Memory $C0 adr MSB adr LSB data byte in

Write EEPROM Memory Page (page access)(1) $C2 adr MSB adr LSB $00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in

277
2466R–AVR–06/08

ATmega16(L)

Notes: 1. Not all instructions are applicable for all parts.
2. a = address
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and

Page size.
6. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 137 on page
277.

Figure 137. Serial Programming Instruction example

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB

Page Offset

Page Number

Adr MMSSBA AAdrr LLSBB

278
2466R–AVR–06/08

ATmega16(L)

SPI Serial
Programming
Characteristics

For characteristics of the SPI module, see “SPI Timing Characteristics” on page 295.

Figure 138. SPI Serial Programming Waveforms

Programming via
the JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared.
Alternatively, if the JTD bit is set, the External Reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in running mode while still allowing In-System
Programming via the JTAG interface. Note that this technique can not be used when using the
JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be dedi-
cated for this purpose.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

Programming Specific
JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for Programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in Figure 139.

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

279
2466R–AVR–06/08

ATmega16(L)

Figure 139. State Machine Sequence for Changing the Instruction Word

AVR_RESET ($C) The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking
the device out from the Reset Mode. The TAP controller is not reset by this instruction. The one
bit Reset Register is selected as Data Register. Note that the Reset will be active as long as
there is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

PROG_ENABLE ($4) The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-
bit Programming Enable Register is selected as Data Register. The active states are the
following:

• Shift-DR: The programming enable signature is shifted into the Data Register.

• Update-DR: The programming enable signature is compared to the correct value, and
Programming mode is entered if the signature is valid.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

280
2466R–AVR–06/08

ATmega16(L)

PROG_COMMANDS
($5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as Data Register. The active
states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the
previous command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not always
required, see Table 117 below).

PROG_PAGELOAD
($6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
The 1024 bit Virtual Flash Page Load Register is selected as Data Register. This is a virtual
scan chain with length equal to the number of bits in one Flash page. Internally the Shift Register
is 8-bit. Unlike most JTAG instructions, the Update-DR state is not used to transfer data from the
Shift Register. The data are automatically transferred to the Flash page buffer byte by byte in the
Shift-DR state by an internal state machine. This is the only active state:

• Shift-DR: Flash page data are shifted in from TDI by the TCK input, and automatically
loaded into the Flash page one byte at a time.

Note: The JTAG instruction PROG_PAGELOAD can only be used if the AVR device is the first device in
JTAG scan chain. If the AVR cannot be the first device in the scan chain, the byte-wise program-
ming algorithm must be used.

PROG_PAGEREAD
($7)

The AVR specific public JTAG instruction to read one full Flash data page via the JTAG port.
The 1032 bit Virtual Flash Page Read Register is selected as Data Register. This is a virtual
scan chain with length equal to the number of bits in one Flash page plus 8. Internally the Shift
Register is 8-bit. Unlike most JTAG instructions, the Capture-DR state is not used to transfer
data to the Shift Register. The data are automatically transferred from the Flash page buffer byte
by byte in the Shift-DR state by an internal state machine. This is the only active state:

• Shift-DR: Flash data are automatically read one byte at a time and shifted out on TDO by the
TCK input. The TDI input is ignored.

Note: The JTAG instruction PROG_PAGEREAD can only be used if the AVR device is the first device in
JTAG scan chain. If the AVR cannot be the first device in the scan chain, the byte-wise program-
ming algorithm must be used.

Data Registers The Data Registers are selected by the JTAG Instruction Registers described in section “Pro-
gramming Specific JTAG Instructions” on page 278. The Data Registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Virtual Flash Page Load Register

• Virtual Flash Page Read Register

281
2466R–AVR–06/08

ATmega16(L)

Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering programming mode.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the Fuse set-
tings for the clock options, the part will remain reset for a Reset Time-out Period (refer to “Clock
Sources” on page 25) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 115 on page 230.

Programming Enable
Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 1010_0011_0111_0000. When the contents
of the register is equal to the programming enable signature, programming via the JTAG port is
enabled. The register is reset to 0 on Power-on Reset, and should always be reset when leaving
Programming mode.

Figure 140. Programming Enable Register
TDI

TDO

D
A
T
A

= D Q

ClockDR & PROG_ENABLE

Programming Enable
$A370

282
2466R–AVR–06/08

ATmega16(L)

Programming
Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 117. The state sequence when shifting in
the programming commands is illustrated in Figure 142.

Figure 141. Programming Command Register
TDI

TDO

S
T
R
O
B
E
S

A
D
D
R
E
S
S
/
D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

283
2466R–AVR–06/08

ATmega16(L)

Table 117. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 – Low byte, 1 – High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes

1a. Chip erase 0100011_10000000
0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for chip erase complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data 0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page 0110111_00000000

0110101_00000000
0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte 0110010_00000000
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo
xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data 0110111_00000000
1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page 0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

284
2466R–AVR–06/08

ATmega16(L)

5d. Read Data Byte 0110011_bbbbbbbb
0110010_00000000
0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse High byte 0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse Low byte 0110011_00000000
0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(8) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits 0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Fuse High Byte(6) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse Low Byte(7) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Lock Bits(8) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo
(5)

8e. Read Fuses and Lock Bits 0111110_00000000

0110010_00000000
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(5)

Fuse High Byte
Fuse Low Byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

Table 117. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 – Low byte, 1 – High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes

285
2466R–AVR–06/08

ATmega16(L)

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding fuse, “1” to unprogram the fuse.
4. Set bits to “0” to program the corresponding lock bit, “1” to leave the lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses High byte is listed in Table 105 on page 260
7. The bit mapping for Fuses Low byte is listed in Table 106 on page 261
8. The bit mapping for Lock bits byte is listed in Table 103 on page 259
9. Address bits exceeding PCMSB and EEAMSB (Table 107 and Table 108) are don’t care

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command 0100011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 117. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 – Low byte, 1 – High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes

286
2466R–AVR–06/08

ATmega16(L)

Figure 142. State Machine Sequence for Changing/Reading the Data Word

Virtual Flash Page
Load Register

The Virtual Flash Page Load Register is a virtual scan chain with length equal to the number of
bits in one Flash page. Internally the Shift Register is 8-bit, and the data are automatically trans-
ferred to the Flash page buffer byte by byte. Shift in all instruction words in the page, starting
with the LSB of the first instruction in the page and ending with the MSB of the last instruction in
the page. This provides an efficient way to load the entire Flash page buffer before executing
Page Write.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

287
2466R–AVR–06/08

ATmega16(L)

Figure 143. Virtual Flash Page Load Register

Virtual Flash Page
Read Register

The Virtual Flash Page Read Register is a virtual scan chain with length equal to the number of
bits in one Flash page plus 8. Internally the Shift Register is 8-bit, and the data are automatically
transferred from the Flash data page byte by byte. The first 8 cycles are used to transfer the first
byte to the internal Shift Register, and the bits that are shifted out during these 8 cycles should
be ignored. Following this initialization, data are shifted out starting with the LSB of the first
instruction in the page and ending with the MSB of the last instruction in the page. This provides
an efficient way to read one full Flash page to verify programming.

Figure 144. Virtual Flash Page Read Register

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine

288
2466R–AVR–06/08

ATmega16(L)

Programming
Algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 117.

Entering Programming
Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 1010_0011_0111_0000 in the Programming
Enable Register.

Leaving Programming
Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the programming
Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS.

2. Start chip erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE (refer
to Table 113 on page 272).

Programming the
Flash

Before programming the Flash a Chip Erase must be performed. See “Performing Chip Erase”
on page 288.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 113 on page 272).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to
Table 107 on page 262) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page, starting with the LSB
of the first instruction in the page and ending with the MSB of the last instruction in the
page.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 113 on page 272).

9. Repeat steps 3 to 8 until all data have been programmed.

289
2466R–AVR–06/08

ATmega16(L)

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to
Table 107 on page 262) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page by shifting out all instruction words in the page, starting with the
LSB of the first instruction in the page and ending with the MSB of the last instruction in
the page. Remember that the first 8 bits shifted out should be ignored.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

Programming the
EEPROM

Before programming the EEPROM a Chip Erase must be performed. See “Performing Chip
Erase” on page 288.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH
(refer to Table 113 on page 272).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM

Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM

290
2466R–AVR–06/08

ATmega16(L)

Programming the
Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data High byte using programming instructions 6b. A bit value of “0” will program
the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to
Table 113 on page 272).

6. Load data Low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

7. Write Fuse Low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to
Table 113 on page 272).

Programming the Lock
Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding Lock bit, a “1” will leave the Lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer
to Table 113 on page 272).

Reading the Fuses
and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

Reading the Signature
Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address $00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address $01 and address $02 to read the second and third
signature bytes, respectively.

Reading the
Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address $00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.

291
2466R–AVR–06/08

ATmega16(L)

Electrical Characteristics

Absolute Maximum Ratings*

DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins................. 200.0mA PDIP and

400.0mA TQFP/MLF

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (Unless Otherwise Noted)

Symbol Parameter Condition Min Typ Max Units

VIL
Input Low Voltage except
XTAL1 and RESET pins

VCC=2.7 - 5.5 -0.5 0.2 VCC
(1) V

VIH
Input High Voltage except
XTAL1 and RESET pins

VCC=2.7 - 5.5 0.6 VCC
(2) VCC +0.5 V

VIH1
Input High Voltage

XTAL1 pin
VCC=2.7 - 5.5 0.7 VCC

(2) VCC +0.5 V

VIL1
Input Low Voltage

XTAL1 pin
VCC=2.7 - 5.5 -0.5 0.1 VCC

(1) V

VIH2
Input High Voltage

RESET pin
VCC=2.7 - 5.5 0.9 VCC

(2) VCC +0.5 V

VIL2
Input Low Voltage

RESET pin
VCC=2.7 - 5.5 -0.5 0.2 VCC V

VOL
Output Low Voltage(3)

(Ports A,B,C,D)
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.7
0.5

V
V

VOH
Output High Voltage(4)

(Ports A,B,C,D)
IOH = -20 mA, VCC = 5V
IOH = -10 mA, VCC = 3V

4.2
2.2

V
V

IIL
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value)

1 µA

RRST Reset Pull-up Resistor 30 60 kΩ
Rpu I/O Pin Pull-up Resistor 20 50 kΩ

292
2466R–AVR–06/08

ATmega16(L)

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for port A0 - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7,C0 - C7, D0 - D7 and XTAL2, should not exceed 100 mA.
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B4, should not exceed 100 mA.
4] The sum of all IOL, for ports B3 - B7, XTAL2, D0 - D2, should not exceed 100 mA.
5] The sum of all IOL, for ports D3 - D7, should not exceed 100 mA.
6] The sum of all IOL, for ports C0 - C7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for port A0 - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7,C0 - C7, D0 - D7 and XTAL2, should not exceed 100 mA.
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B4, should not exceed 100 mA.
4] The sum of all IOH, for ports B3 - B7, XTAL2, D0 - D2, should not exceed 100 mA.

ICC

Power Supply Current

Active 1 MHz, VCC = 3V

(ATmega16L)
1.1 mA

Active 4 MHz, VCC = 3V

(ATmega16L)
3.8 5 mA

Active 8 MHz, VCC = 5V

(ATmega16)
12 15 mA

Idle 1 MHz, VCC = 3V

(ATmega16L)
0.35 mA

Idle 4 MHz, VCC = 3V

(ATmega16L)
1.2 2 mA

Idle 8 MHz, VCC = 5V

(ATmega16)
5.5 7 mA

Power-down Mode(5)
WDT enabled, VCC = 3V <8 15 µA

WDT disabled, VCC = 3V < 1 4 µA

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V

Vin = VCC/2
40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACPD
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (Unless Otherwise Noted) (Continued)

Symbol Parameter Condition Min Typ Max Units

293
2466R–AVR–06/08

ATmega16(L)

5] The sum of all IOH, for ports D3 - D7, should not exceed 100 mA.
6] The sum of all IOH, for ports C0 - C7, should not exceed 100 mA.If IOH exceeds the test condition, VOH may exceed the
related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum VCC for Power-down is 2.5V.

External Clock
Drive Waveforms

Figure 145. External Clock Drive Waveforms

External Clock
Drive

Note: 1. Refer to “External Clock” on page 31 for details.

Notes: 1. R should be in the range 3 kΩ - 100 kΩ, and C should be at least 20 pF.
2. The frequency will vary with package type and board layout.

VIL1

VIH1

Table 118. External Clock Drive(1)

Symbol Parameter

VCC = 2.7V to 5.5V VCC = 4.5V to 5.5V

UnitsMin Max Min Max

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns

tCLCH Rise Time 1.6 0.5 μs

tCHCL Fall Time 1.6 0.5 μs

ΔtCLCL

Change in period from
one clock cycle to the
next

2 2 %

Table 119. External RC Oscillator, Typical Frequencies (VCC = 5)

R [kΩ](1) C [pF] f (2)

33 22 650 kHz

10 22 2.0 MHz

294
2466R–AVR–06/08

ATmega16(L)

Two-wire Serial Interface Characteristics
Table 120 describes the requirements for devices connected to the Two-wire Serial Bus. The ATmega16 Two-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 146.

Notes: 1. In ATmega16, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.
3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency

Table 120. Two-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock fSCL ≤ 100 kHz(6) 4.7 – µs

fSCL > 100 kHz(7) 1.3 – µs

tHIGH High period of the SCL clock fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA

Set-up time for a repeated START condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

tSU;STO Setup time for STOP condition fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF Bus free time between a STOP and START
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 1.3 – µs

VCC 0,4V–

3mA
---------------------------- 1000ns

Cb
------------------- Ω

VCC 0,4V–

3mA
---------------------------- 300ns

Cb
---------------- Ω

295
2466R–AVR–06/08

ATmega16(L)

5. This requirement applies to all ATmega16 Two-wire Serial Interface operation. Other devices
connected to the Two-wire Serial Bus need only obey the general fSCL requirement.

6. The actual low period generated by the ATmega16 Two-wire Serial Interface is (1/fSCL - 2/fCK),
thus fCK must be greater than 6 MHz for the low time requirement to be strictly met at fSCL =
100 kHz.

7. The actual low period generated by the ATmega16 Two-wire Serial Interface is (1/fSCL - 2/fCK),
thus the low time requirement will not be strictly met for fSCL > 308 kHz when fCK = 8 MHz. Still,
ATmega16 devices connected to the bus may communicate at full speed (400 kHz) with other
ATmega16 devices, as well as any other device with a proper tLOW acceptance margin.

Figure 146. Two-wire Serial Bus Timing

SPI Timing
Characteristics

See Figure 147 and Figure 148 for details.

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 121. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 58

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tSCK

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tSCK

11 SCK high/low Slave 2 • tSCK

12 Rise/Fall time Slave 1.6 µs

13 Setup Slave 10

ns

14 Hold Slave 10

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 2 • tSCK

296
2466R–AVR–06/08

ATmega16(L)

Figure 147. SPI Interface Timing Requirements (Master Mode)

Figure 148. SPI Interface Timing Requirements (Slave Mode)

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

18

297
2466R–AVR–06/08

ATmega16(L)

ADC Characteristics

Table 122. ADC Characteristics

Symbol Parameter Condition Min (1) Typ (1) Max(1) Units

Resolution

Single Ended Conversion 10 Bits

Differential Conversion
Gain = 1x or 10x

8 Bits

Differential Conversion
Gain = 200x

7 Bits

Absolute Accuracy (Including INL, DNL,
Quantization Error, Gain, and Offset Error).

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

1.5 2.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 1 MHz

3 4 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz
Noise Reduction mode

1.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 1 MHz
Noise Reduction mode

3 LSB

Integral Non-linearity (INL)
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

1 LSB

Differential Non-linearity (DNL)
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

0.5 LSB

Gain Error
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

1 LSB

Offset Error
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

LSB

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency 50 1000 kHz

AVCC Analog Supply Voltage VCC - 0.3(2) VCC + 0.3(3) V

VREF Reference Voltage
Single Ended Conversion 2.0 AVCC V

Differential Conversion 2.0 AVCC - 0.2 V

VIN

Input voltage
Single ended channels GND VREF V

Differential channels 0 VREF V

Input bandwidth
Single ended channels 38.5 kHz

Differential channels 4 kHz

298
2466R–AVR–06/08

ATmega16(L)

Notes: 1. Values are guidelines only.
2. Minimum for AVCC is 2.7V.
3. Maximum for AVCC is 5.5V.

VINT Internal Voltage Reference 2.3 2.6 2.9 V

RREF Reference Input Resistance 32 kΩ
RAIN Analog Input Resistance 100 MΩ

Table 122. ADC Characteristics (Continued)

Symbol Parameter Condition Min (1) Typ (1) Max(1) Units

299
2466R–AVR–06/08

ATmega16(L)

ATmega16
Typical
Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where
CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

Active Supply Current Figure 149. Active Supply Current vs. Frequency (0.1 - 1.0 MHz

ACTIVE SUPPLY CURRENT vs. FREQUENCY
0.1 - 1.0 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V
3.6V
3.3V
3.0V

5.0V

2.7V

300
2466R–AVR–06/08

ATmega16(L)

Figure 150. Active Supply Current vs. Frequency (1 - 20 MHz)

Figure 151. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY
1 - 20 MHz

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V

3.6V

3.3V

3.0V

5.0V

2.7V

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

0

2

4

6

8

10

12

14

16

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C-40°C

301
2466R–AVR–06/08

ATmega16(L)

Figure 152. Active Supply Current vs. VCC (Internal RC Oscillator, 4 MHz)

Figure 153. Active Supply Current vs. VCC (Internal RC Oscillator, 2 MHz)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 4 MHz

0

1

2

3

4

5

6

7

8

9

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C
-40°C

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 2 MHz

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C

-40°C

302
2466R–AVR–06/08

ATmega16(L)

Figure 154. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 155. Active Supply Current vs. VCC (32 kHz External Oscillator)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C 25°C

-40°C

ACTIVE SUPPLY CURRENT vs. VCC

32kHz EXTERNAL OSCILLATOR

0

20

40

60

80

100

120

140

160

180

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

25°C

85°C

303
2466R–AVR–06/08

ATmega16(L)

Idle Supply Current Figure 156. Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

Figure 157. Idle Supply Current vs. Frequency (1 - 20 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY
0.1 - 1.0 MHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V

3.6V
3.3V

3.0V

5.0V

2.7V

IDLE SUPPLY CURRENT vs. FREQUENCY
1 - 20 MHz

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V

3.6V

3.3V

3.0V

5.0V

2.7V

304
2466R–AVR–06/08

ATmega16(L)

Figure 158. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

Figure 159. Idle Supply Current vs. VCC (Internal RC Oscillator, 4 MHz)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

0

1

2

3

4

5

6

7

8

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C-40°C

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 4 MHz

0

0.5

1

1.5

2

2.5

3

3.5

4

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C -40°C

305
2466R–AVR–06/08

ATmega16(L)

Figure 160. Idle Supply Current vs. VCC (Internal RC Oscillator, 2 MHz)

Figure 161. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 2 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C
25°C

-40°C

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C

306
2466R–AVR–06/08

ATmega16(L)

Figure 162. Idle Supply Current vs. VCC (32 kHz External Oscillator)

Power-Down Supply
Current

Figure 163. Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)

IDLE SUPPLY CURRENT vs. VCC

32kHz EXTERNAL OSCILLATOR

0

5

10

15

20

25

30

35

40

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85°C

25°C

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85°C

25°C

-40°C

307
2466R–AVR–06/08

ATmega16(L)

Figure 164. Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)

Power-Save Supply
Current

Figure 165. Power-Save Supply Current vs. VCC (Watchdog Timer Disabled)

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER ENABLED

0

2

4

6

8

10

12

14

16

18

20

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85°C

25°C

-40°C

POWER-SAVE SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED

0

2

4

6

8

10

12

14

16

18

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85°C

25°C

308
2466R–AVR–06/08

ATmega16(L)

Standby Supply
Current

Figure 166. Standby Supply Current vs. VCC (455 kHz Resonator, Watchdog Timer Disabled)

Figure 167. Standby Supply Current vs. VCC (1 MHz Resonator, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

455 kHz RESONATOR, WATCHDOG TIMER DISABLED

0

10

20

30

40

50

60

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

STANDBY SUPPLY CURRENT vs. VCC

1 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

5

10

15

20

25

30

35

40

45

50

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

309
2466R–AVR–06/08

ATmega16(L)

Figure 168. Standby Supply Current vs. VCC (2 MHz Resonator, Watchdog Timer Disabled)

Figure 169. Standby Supply Current vs. VCC (2 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

2 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

10

20

30

40

50

60

70

80

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

STANDBY SUPPLY CURRENT vs. VCC

2 MHz XTAL, WATCHDOG TIMER DISABLED

0

10

20

30

40

50

60

70

80

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

310
2466R–AVR–06/08

ATmega16(L)

Figure 170. Standby Supply Current vs. VCC (4 MHz Resonator, Watchdog Timer Disabled)

Figure 171. Standby Supply Current vs. VCC (4 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

4 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

STANDBY SUPPLY CURRENT vs. VCC

4 MHz XTAL, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

311
2466R–AVR–06/08

ATmega16(L)

Figure 172. Standby Supply Current vs. VCC (6 MHz Resonator, Watchdog Timer Disabled)

Figure 173. Standby Supply Current vs. VCC (6 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

6 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

STANDBY SUPPLY CURRENT vs. VCC

6 MHz XTAL, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

160

180

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

312
2466R–AVR–06/08

ATmega16(L)

Pin Pullup Figure 174. I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 175. I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 2.7V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vcc = 5V

0

20

40

60

80

100

120

140

160

0 1 2 3

VIO (V)

I IO
 (

u
A

)

85°C 25°C

-40°C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vcc = 2.7V

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

VIO (V)

I IO
 (

u
A

)

85°C 25°C

-40°C

313
2466R–AVR–06/08

ATmega16(L)

Figure 176. Reset Pull-Up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

Figure 177. Reset Pull-Up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vcc = 5V

0

20

40

60

80

100

120

0 1 2 3

VRESET (V)

I R
E

S
E

T
 (

u
A

)
85°C

25°C-40°C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vcc = 2.7V

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

u
A

)

85°C

25°C
-40°C

314
2466R–AVR–06/08

ATmega16(L)

Pin Driver Strength Figure 178. I/O Pin Source Current vs. Output Voltage (VCC = 5V)

Figure 179. I/O Pin Source Current vs. Output Voltage (VCC = 2.7V)

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE
Vcc = 5V

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4

VOH (V)

I O
H
 (

m
A

)

85°C

25°C

-40°C

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE
Vcc = 2.7V

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

VOH (V)

I O
H
 (

m
A

)

85°C

25°C

-40°C

315
2466R–AVR–06/08

ATmega16(L)

Figure 180. I/O Pin Sink Current vs. Output Voltage (VCC = 5V)

Figure 181. I/O Pin Sink Current vs. Output Voltage (VCC = 2.7V)

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
Vcc = 5V

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5

VOL (V)

I O
L
 (

m
A

)
85°C

25°C

-40°C

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
Vcc = 2.7V

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5

VOL (V)

I O
L
 (

m
A

)

85°C

25°C

-40°C

316
2466R–AVR–06/08

ATmega16(L)

Pin Thresholds And
Hysteresis

Figure 182. I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read As '1')

Figure 183. I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin Read As '0')

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIH, IO PIN READ AS '1'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85°C

25°C
-40°C

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85°C

25°C

-40°C

317
2466R–AVR–06/08

ATmega16(L)

Figure 184. I/O Pin Input Hysteresis vs. VCC

Figure 185. Reset Input Threshold Voltage vs. VCC (VIH, Reset Pin Read As '1')

I/O PIN INPUT HYSTERESIS vs. VCC

0

0.2

0.4

0.6

0.8

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

H
ys

te
re

si
s

(m
V)

85°C
25°C

-40°C

RESET INPUT THRESHOLD VOLTAGE vs. VCC

VIH, RESET PIN READ AS '1'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85°C

25°C

-40°C

318
2466R–AVR–06/08

ATmega16(L)

Figure 186. Reset Input Threshold Voltage vs. VCC (VIL, Reset Pin Read As '0')

Figure 187. Reset Input Pin Hysteresis vs. VCC

RESET INPUT THRESHOLD VOLTAGE vs. VCC

VIL, RESET PIN READ AS '0'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85°C

25°C -40°C

RESET INPUT PIN HYSTERESIS vs. VCC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

H
ys

te
re

si
s

(m
V)

85°C

25°C

-40°C

319
2466R–AVR–06/08

ATmega16(L)

Bod Thresholds And
Analog Comparator
Offset

Figure 188. Bod Thresholds vs. Temperature (Bodlevel is 4.0V)

Figure 189. Bod Thresholds vs. Temperature (Bodlevel is 2.7V)

BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL IS 4.0 V

3.7

3.8

3.9

4

4.1

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (˚C)

T
h

re
s
h

o
ld

 (
V

)
Rising VCC

Falling VCC

BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL IS 2.7 V

2.4

2.5

2.6

2.7

2.8

2.9

3

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (˚C)

T
h

re
s
h

o
ld

 (
V

)

Rising VCC

Falling VCC

320
2466R–AVR–06/08

ATmega16(L)

Figure 190. Bandgap Voltage vs. VCC

Figure 191. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)

BANDGAP VOLTAGE vs. VCC

1.225

1.23

1.235

1.24

1.245

1.25

2.5 3 3.5 4 4.5 5 5.5

Vcc (V)

B
a

n
d

g
a

p
 V

o
lt
a

g
e

 (
V

)

85°

25°

-40°

ANALOG COMPARATOR OFFSET VOLTAGE vs. COMMON MODE VOLTAGE
VCC = 5V

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Common Mode Voltage (V)

C
o

m
p

a
ra

to
r

O
ff

s
e

t
V

o
lt
a

g
e

 (
V

)

85°C

25°C

321
2466R–AVR–06/08

ATmega16(L)

Figure 192. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 3V)

Internal Oscillator
Speed

Figure 193. Watchdog Oscillator Frequency vs. VCC

ANALOG COMPARATOR OFFSET VOLTAGE vs. COMMON MODE VOLTAGE
VCC = 3V

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 0.5 1 1.5 2 2.5 3

Common Mode Voltage (V)

C
o

m
p

a
ra

to
r

O
ff

s
e

t
V

o
lt
a

g
e

 (
V

)

85°C

25°C

WATCHDOG OSCILLATOR FREQUENCY vs. VCC

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

k
H

z
)

25°C

-40°C

85 C°

322
2466R–AVR–06/08

ATmega16(L)

Figure 194. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

Figure 195. Calibrated 8 MHz RC Oscillator Frequency vs. VCC

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

6.6

7

7.4

7.8

8.2

8.6

9

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z
)

5.5V

2.7V

4.0V

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. VCC

6.5

6.7

6.9

7.1

7.3

7.5

7.7

7.9

8.1

8.3

8.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
)

85°C

25°C

-40°C

323
2466R–AVR–06/08

ATmega16(L)

Figure 196. Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value

Figure 197. Calibrated 4 MHz RC Oscillator Frequency vs. Temperature

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

3

4

5

6

7

8

9

10

11

12

13

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z
)

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

3.6

3.7

3.8

3.9

4

4.1

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z
)

5.5V

2.7V

4.0V

324
2466R–AVR–06/08

ATmega16(L)

Figure 198. Calibrated 4 MHz RC Oscillator Frequency vs. VCC

Figure 199. Calibrated 4 MHz RC Oscillator Frequency vs. Osccal Value

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. VCC

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
)

85°C

25°C

-40°C

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z
)

325
2466R–AVR–06/08

ATmega16(L)

Figure 200. Calibrated 2 MHz RC Oscillator Frequency vs. Temperature

Figure 201. Calibrated 2 MHz RC Oscillator Frequency vs. VCC

CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

1.8

1.85

1.9

1.95

2

2.05

2.1

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z
)

5.5V

2.7V

4.0V

CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. VCC

1.7

1.8

1.9

2

2.1

2.2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
) 85°C

25°C
-40°C

326
2466R–AVR–06/08

ATmega16(L)

Figure 202. Calibrated 2 MHz RC Oscillator Frequency vs. Osccal Value

Figure 203. Calibrated 1 MHz RC Oscillator Frequency vs. Temperature

CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z
)

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z
)

5.5V

2.7V

4.0V

327
2466R–AVR–06/08

ATmega16(L)

Figure 204. Calibrated 1 MHz RC Oscillator Frequency vs. VCC

Figure 205. Calibrated 1 MHz RC Oscillator Frequency vs. Osccal Value

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. VCC

0.9

0.95

1

1.05

1.1

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
)

85°C

25°C
-40°C

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

0.4

0.6

0.8

1

1.2

1.4

1.6

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z
)

328
2466R–AVR–06/08

ATmega16(L)

Current Consumption
Of Peripheral Units

Figure 206. Brownout Detector Current vs. VCC

Figure 207. ADC Current vs. VCC(Aref = AVCC)

BROWNOUT DETECTOR CURRENT vs. VCC

8

10

12

14

16

18

20

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

) 85°C

25°C

-40°C

ADC CURRENT vs. VCC

AREF = AVCC

0

50

100

150

200

250

300

350

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85°C
25°C

-40°C

329
2466R–AVR–06/08

ATmega16(L)

Figure 208. Aref External Reference Current vs. VCC

Figure 209. 32khz Tosc Current vs. VCC (Watchdog Timer Disabled)

AREF EXTERNAL REFERENCE CURRENT vs. VCC

0

20

40

60

80

100

120

140

160

180

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I A
R

E
F
 (

u
A

)

85°C 25°C

-40°C

32kHz TOSC CURRENT vs. VCC

WATCHDOG TIMER DISABLED

0

2

4

6

8

10

12

14

16

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85°C

25°C

330
2466R–AVR–06/08

ATmega16(L)

Figure 210. Watchdog Timer Current vs. VCC

Figure 211. Programming Current vs. VCC

WATCHDOG TIMER CURRENT vs. VCC

0

2

4

6

8

10

12

14

16

18

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85°C

25°C
-40°C

PROGRAMMING CURRENT vs. VCC

0

1

2

3

4

5

6

7

8

9

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C

-40°C

331
2466R–AVR–06/08

ATmega16(L)

Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

$3F ($5F) SREG I T H S V N Z C 9

$3E ($5E) SPH – – – – – SP10 SP9 SP8 12

$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

$3C ($5C) OCR0 Timer/Counter0 Output Compare Register 85

$3B ($5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE 48, 69

$3A ($5A) GIFR INTF1 INTF0 INTF2 – – – – – 70

$39 ($59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 85, 115, 133

$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 86, 115, 133

$37 ($57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 250

$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 180

$35 ($55) MCUCR SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 32, 68

$34 ($54) MCUCSR JTD ISC2 – JTRF WDRF BORF EXTRF PORF 41, 69, 231

$33 ($53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 83

$32 ($52) TCNT0 Timer/Counter0 (8 Bits) 85

$31(1) ($51)(1) OSCCAL Oscillator Calibration Register 30

OCDR On-Chip Debug Register 227

$30 ($50) SFIOR ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 57,88,134,201,221

$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 110

$2E ($4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 113

$2D ($4D) TCNT1H Timer/Counter1 – Counter Register High Byte 114

$2C ($4C) TCNT1L Timer/Counter1 – Counter Register Low Byte 114

$2B ($4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 114

$2A ($4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 114

$29 ($49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 114

$28 ($48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 114

$27 ($47) ICR1H Timer/Counter1 – Input Capture Register High Byte 114

$26 ($46) ICR1L Timer/Counter1 – Input Capture Register Low Byte 114

$25 ($45) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 128

$24 ($44) TCNT2 Timer/Counter2 (8 Bits) 130

$23 ($43) OCR2 Timer/Counter2 Output Compare Register 130

$22 ($42) ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB 131

$21 ($41) WDTCR – – – WDTOE WDE WDP2 WDP1 WDP0 43

$20(2) ($40)(2) UBRRH URSEL – – – UBRR[11:8] 167

UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL 166

$1F ($3F) EEARH – – – – – – – EEAR8 19

$1E ($3E) EEARL EEPROM Address Register Low Byte 19

$1D ($3D) EEDR EEPROM Data Register 19

$1C ($3C) EECR – – – – EERIE EEMWE EEWE EERE 19

$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 66

$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 66

$19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 66

$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 66

$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 66

$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 66

$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 67

$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 67

$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 67

$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 67

$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 67

$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 67

$0F ($2F) SPDR SPI Data Register 142

$0E ($2E) SPSR SPIF WCOL – – – – – SPI2X 142

$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 140

$0C ($2C) UDR USART I/O Data Register 163

$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 164

$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 165

$09 ($29) UBRRL USART Baud Rate Register Low Byte 167

$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 202

$07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 217

$06 ($26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 219

$05 ($25) ADCH ADC Data Register High Byte 220

$04 ($24) ADCL ADC Data Register Low Byte 220

$03 ($23) TWDR Two-wire Serial Interface Data Register 182

$02 ($22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 182

332
2466R–AVR–06/08

ATmega16(L)

Notes: 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debug-
ger specific documentation for details on how to use the OCDR Register.

2. Refer to the USART description for details on how to access UBRRH and UCSRC.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

should never be written.
4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on

all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

$01 ($21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 181

$00 ($20) TWBR Two-wire Serial Interface Bit Rate Register 180

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

333
2466R–AVR–06/08

ATmega16(L)

Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2

334
2466R–AVR–06/08

ATmega16(L)

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1

Mnemonics Operands Description Operation Flags #Clocks

335
2466R–AVR–06/08

ATmega16(L)

CLH Clear Half Carry Flag in SREG H ← 0 H 1
MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-Chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks

336
2466R–AVR–06/08

ATmega16(L)

Ordering Information

Note: 1. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

Speed (MHz) Power Supply Ordering Code Package Operation Range

8 2.7 - 5.5V
ATmega16L-8AU(1)

ATmega16L-8PU(1)

ATmega16L-8MU(1)

44A
40P6
44M1

Industrial
(-40oC to 85oC)

16 4.5 - 5.5V
ATmega16-16AU(1)

ATmega16-16PU(1)

ATmega16-16MU(1)

44A
40P6
44M1

Industrial
(-40oC to 85oC)

Package Type

44A 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)

44M1 44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

337
2466R–AVR–06/08

ATmega16(L)

Packaging Information

44A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

B44A

10/5/2001

PIN 1 IDENTIFIER

0˚~7˚

PIN 1

L

C

A1 A2 A

D1

D

e E1 E

B

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable

protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.

3. Lead coplanarity is 0.10 mm maximum.

A – – 1.20

A1 0.05 – 0.15

A2 0.95 1.00 1.05

D 11.75 12.00 12.25

D1 9.90 10.00 10.10 Note 2

E 11.75 12.00 12.25

E1 9.90 10.00 10.10 Note 2

B 0.30 – 0.45

C 0.09 – 0.20

L 0.45 – 0.75

e 0.80 TYP

338
2466R–AVR–06/08

ATmega16(L)

40P6

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual
Inline Package (PDIP) B40P6

09/28/01

PIN
1

E1

A1

B

REF

E

B1

C

L

SEATING PLANE

A

0º ~ 15º

D

e

eB

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A – – 4.826

A1 0.381 – –

D 52.070 – 52.578 Note 2

E 15.240 – 15.875

E1 13.462 – 13.970 Note 2

B 0.356 – 0.559

B1 1.041 – 1.651

L 3.048 – 3.556

C 0.203 – 0.381

eB 15.494 – 17.526

e 2.540 TYP

Notes: 1. This package conforms to JEDEC reference MS-011, Variation AC.
2. Dimensions D and E1 do not include mold Flash or Protrusion.

Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

339
2466R–AVR–06/08

ATmega16(L)

44M1

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm,

 G44M1

5/27/06

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A3 0.25 REF

 b 0.18 0.23 0.30

 D

 D2 5.00 5.20 5.40

6.90 7.00 7.10

6.90 7.00 7.10

 E

 E2 5.00 5.20 5.40

 e 0.50 BSC

 L 0.59 0.64 0.69

K 0.20 0.26 0.41
Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

E2

D2

b e

Pin #1 Corner
L

A1

A3

A

SEATING PLANE

Pin #1
Triangle

Pin #1
Chamfer
(C 0.30)

Option A

Option B

Pin #1
Notch
(0.20 R)

Option C

K

K

1
2
3

5.20 mm Exposed Pad, Micro Lead Frame Package (MLF)

340
2466R–AVR–06/08

ATmega16(L)

Errata The revision letter in this section refers to the revision of the ATmega16 device.

ATmega16(L) Rev.
M

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EER E bit triggers unexp ected interr upt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-
ten in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

ATmega16(L) Rev.
L

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EER E bit triggers unexp ected interr upt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

341
2466R–AVR–06/08

ATmega16(L)

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-
ten in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

ATmega16(L) Rev.
K

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EER E bit triggers unexp ected interr upt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-
ten in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2

342
2466R–AVR–06/08

ATmega16(L)

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

ATmega16(L) Rev.
J

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EER E bit triggers unexp ected interr upt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-
ten in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

343
2466R–AVR–06/08

ATmega16(L)

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

ATmega16(L) Rev.
I

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EER E bit triggers unexp ected interr upt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-
ten in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

344
2466R–AVR–06/08

ATmega16(L)

ATmega16(L) Rev.
H

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EER E bit triggers unexp ected interr upt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-
ten in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

345
2466R–AVR–06/08

ATmega16(L)

Datasheet
Revision
History

Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

Rev. 2466R-06/08 1. Added “Not recommended for new designs” note in Figure on page 1 .

Rev. 2466Q-05/08 1. Updated “Fast PWM Mode” on page 77 in “8-bit Timer/Counter0 with PWM” on page
71:

– Removed the last section describing how to achieve a frequency with 50% duty
cycle waveform output in fast PWM mode.

2. Removed note from Feature list in “Analog to Digital Converter” on page 204 .

3. Removed note from Table 84 on page 218 .

4. Updated “Ordering Information” on page 336 :

- Commercial ordering codes removed.

- Non Pb-free package option removed.

Rev. 2466P-08/07 1. Updated “Features” on page 1 .

2. Added “Data Retention” on page 6 .

3. Updated “Errata” on page 340 .

4. Updated “Slave Mode” on page 140 .

Rev. 2466O-03/07 1. Updated “Calibrated Internal RC Oscillator” on page 29 .

2. Updated C code example in “USART Initialization” on page 149 .

3. Updated “ATmega16 Boundary-scan Order” on page 241 .

4. Removed “premilinary” from “ADC Characteristics” on page 297 .

5. Updated from V to mV in “I/O Pin Input Hysteresis vs. VCC” on page 317 .

6. Updated from V to mV in “Reset Input Pin Hysteresis vs. VCC” on page 318 .

Rev. 2466N-10/06 1. Updated “Timer/Counter Oscillator” on page 31 .

2. Updated “Fast PWM Mode” on page 102 .

3. Updated Table 38 on page 83 , Table 40 on page 84 , Table 45 on page 111 , Table 47 on
page 112, Table 50 on page 128 and Table 52 on page 129 .

4. Updated C code example in “USART Initialization” on page 149 .

5. Updated “Errata” on page 340 .

346
2466R–AVR–06/08

ATmega16(L)

Rev. 2466M-04/06 1. Updated typos.

2. Updated “Serial Peripheral Interface – SPI” on page 135 .

3. Updated Table 86 on page 221 , Table 116 on page 276 ,Table 121 on page 295 and
Table 122 on page 297 .

Rev. 2466L-06/05 1. Updated note in “Bit Rate Generator Unit” on page 178 .

2. Updated values for V INT in “ADC Characteristics” on page 297 .

3. Updated “Serial Programming Instruction set” on page 276 .

4. Updated USART init C-code example in “USART” on page 144 .

Rev. 2466K-04/05 1. Updated “Ordering Information” on page 336 .

2. MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame Package
QFN/MLF”.

3. Updated “Electrical Characteristics” on page 291 .

Rev. 2466J-10/04 1. Updated “Ordering Information” on page 336 .

Rev. 2466I-10/04 1. Removed references to analog ground.

2. Updated Table 7 on page 28 , Table 15 on page 38 , Table 16 on page 42 , Table 81 on
page 209, Table 116 on page 276 , and Table 119 on page 293 .

3. Updated “Pinout ATmega16” on page 2 .

4. Updated features in “Analog to Digital Converter” on page 204 .

5. Updated “Version” on page 229 .

6. Updated “Calibration Byte” on page 261 .

7. Added “Page Size” on page 262 .

Rev. 2466H-12/03 1. Updated “Calibrated Internal RC Oscillator” on page 29 .

Rev. 2466G-10/03 1. Removed “Preliminary” from the datasheet.

2. Changed ICP to ICP1 in the datasheet.

3. Updated “JTAG Interface and On-chip Debug System” on page 36 .

4. Updated assembly and C code examples in “Watchdog Timer Control Register –
WDTCR” on page 43 .

5. Updated Figure 46 on page 103 .

347
2466R–AVR–06/08

ATmega16(L)

6. Updated Table 15 on page 38 , Table 82 on page 217 and Table 115 on page 276 .

7. Updated “Test Access Port – TAP” on page 222 regarding JTAGEN.

8. Updated description for the JTD bit on page 231.

9. Added note 2 to Figure 126 on page 252 .

10. Added a note regarding JTAGEN fuse to Table 105 on page 260 .

11. Updated Absolute Maximum Ratings* and DC Characteristics in “Electrical Character-
istics” on page 291 .

12. Updated “ATmega16 Typical Characteristics” on page 299 .

13. Fixed typo for 16 MHz QFN/MLF package in “Ordering Information” on page 336 .

14. Added a proposal for solving problems regarding the JTAG instruction IDCODE in
“Errata” on page 340 .

Rev. 2466F-02/03 1. Added note about masking out unused bits when reading the Program Counter in
“Stack Pointer” on page 12 .

2. Added Chip Erase as a first step in “Programming the Flash” on page 288 and “Pro-
gramming the EEPROM” on page 289 .

3. Added the section “Unconnected pins” on page 55 .

4. Added tips on how to disable the OCD system in “On-chip Debug System” on page
34.

5. Removed reference to the “Multi-purpose Oscillator” application note and “32 kHz
Crystal Oscillator” application note, which do not exist.

6. Added information about PWM symmetry for Timer0 and Timer2.

7. Added note in “Filling the Temporary Buffer (Page Loading)” on page 253 about writ-
ing to the EEPROM during an SPM Page Load.

8. Removed ADHSM completely.

9. Added Table 73, “TWI Bit Rate Prescaler,” on page 182 to describe the TWPS bits in
the “TWI Status Register – TWSR” on page 181 .

10. Added section “Default Clock Source” on page 25 .

11. Added note about frequency variation when using an external clock. Note added in
“External Clock” on page 31 . An extra row and a note added in Table 118 on page 293 .

12. Various minor TWI corrections.

13. Added “Power Consumption” data in “Features” on page 1 .

348
2466R–AVR–06/08

ATmega16(L)

14. Added section “EEPROM Write During Power-down Sleep Mode” on page 22 .

15. Added note about Differential Mode with Auto Triggering in “Prescaling and Conver-
sion Timing” on page 207 .

16. Added updated “Packaging Information” on page 337 .

Rev. 2466E-10/02 1. Updated “DC Characteristics” on page 291 .

Rev. 2466D-09/02 1. Changed all Flash write/erase cycles from 1,000 to 10,000.

2. Updated the following tables: Table 4 on page 26 , Table 15 on page 38 , Table 42 on
page 85, Table 45 on page 111 , Table 46 on page 111 , Table 59 on page 143 , Table 67
on page 167 , Table 90 on page 235 , Table 102 on page 258 , “DC Characteristics” on
page 291, Table 119 on page 293 , Table 121 on page 295 , and Table 122 on page 297 .

3. Updated “Errata” on page 340 .

Rev. 2466C-03/02 1. Updated typical EEPROM programming time, Table 1 on page 20 .

2. Updated typical start-up time in the following tables:

Table 3 on page 25, Table 5 on page 27, Table 6 on page 28, Table 8 on page 29, Table 9
on page 29, and Table 10 on page 29.

3. Updated Table 17 on page 43 with typical WDT Time-out.

4. Added Some Preliminary Test Li mits and Characterization Data.

Removed some of the TBD's in the following tables and pages:

Table 15 on page 38, Table 16 on page 42, Table 116 on page 272 (table removed in docu-
ment review #D), “Electrical Characteristics” on page 291, Table 119 on page 293, Table
121 on page 295, and Table 122 on page 297.

5. Updated TWI Chapter.

Added the note at the end of the “Bit Rate Generator Unit” on page 178.

6. Corrected description of ADSC bit in “ADC Control and Status Register A – ADCSRA”
on page 219 .

7. Improved description on how to do a polarity check of the ADC doff results in “ADC
Conversion Result” on page 216 .

8. Added JTAG version number for rev. H in Table 87 on page 229 .

9. Added not regarding OCDEN Fuse below Table 105 on page 260 .

10. Updated Programming Figures:

Figure 127 on page 262 and Figure 136 on page 273 are updated to also reflect that AVCC
must be connected during Programming mode. Figure 131 on page 269 added to illustrate
how to program the fuses.

11. Added a note regarding usage of the “PROG_PAGELOAD ($6)” on page 280 and
“PROG_PAGEREAD ($7)” on page 280 .

349
2466R–AVR–06/08

ATmega16(L)

12. Removed alternative algortihm for leaving JTAG Programming mode.

See “Leaving Programming Mode” on page 288.

13. Added Calibrated RC Oscillator characterization curves in section “ATmega16 Typi-
cal Characteristics” on page 299 .

14. Corrected ordering code for QFN/MLF package (16MHz) in “Ordering Information” on
page 336.

15. Corrected Table 90, “Scan Signals for the Oscillators(1)(2)(3),” on page 235 .

350
2466R–AVR–06/08

ATmega16(L)

i
2466R–AVR–06/08

ATmega16(L)

Table of Contents

Features 1

Pin Configurations 2

Disclaimer 2

Overview 3
Block Diagram 3
Pin Descriptions 4

Resources 6

Data Retention 6

About Code Examples 7

AVR CPU Core 8
Introduction 8
Architectural Overview 8
ALU – Arithmetic Logic Unit 9
Status Register 9
General Purpose Register File 11
Stack Pointer 12
Instruction Execution Timing 13
Reset and Interrupt Handling 13

AVR ATmega16 Memories 16
In-System Reprogrammable Flash Program Memory 16
SRAM Data Memory 17
EEPROM Data Memory 18
I/O Memory 23

System Clock and Clock Options 24
Clock Systems and their Distribution 24
Clock Sources 25
Default Clock Source 25
Crystal Oscillator 25
Low-frequency Crystal Oscillator 28
External RC Oscillator 28
Calibrated Internal RC Oscillator 29
External Clock 31
Timer/Counter Oscillator 31

Power Management and Sleep Modes 32

ii
2466R–AVR–06/08

ATmega16(L)

Idle Mode 33
ADC Noise Reduction Mode 33
Power-down Mode 33
Power-save Mode 33
Standby Mode 34
Extended Standby Mode 34
Minimizing Power Consumption 35

System Control and Reset 37
Internal Voltage Reference 42
Watchdog Timer 42

Interrupts 45
Interrupt Vectors in ATmega16 45

I/O Ports 50
Introduction 50
Ports as General Digital I/O 50
Alternate Port Functions 55
Register Description for I/O Ports 66

External Interrupts 68

8-bit Timer/Counter0 with PWM 71
Overview 71
Timer/Counter Clock Sources 72
Counter Unit 72
Output Compare Unit 73
Compare Match Output Unit 74
Modes of Operation 76
Timer/Counter Timing Diagrams 81
8-bit Timer/Counter Register Description 83

Timer/Counter0 and Time r/Counter1 Prescalers 87

16-bit Timer/Counter1 89
Overview 89
Accessing 16-bit Registers 92
Timer/Counter Clock Sources 94
Counter Unit 95
Input Capture Unit 96
Output Compare Units 98
Compare Match Output Unit 100
Modes of Operation 101
Timer/Counter Timing Diagrams 108
16-bit Timer/Counter Register Description 110

iii
2466R–AVR–06/08

ATmega16(L)

8-bit Timer/Counter2 with PWM and Asynchronous Operation 117
Overview 117
Timer/Counter Clock Sources 118
Counter Unit 118
Output Compare Unit 119
Compare Match Output Unit 121
Modes of Operation 122
Timer/Counter Timing Diagrams 126
8-bit Timer/Counter Register Description 128
Asynchronous Operation of the Timer/Counter 131
Timer/Counter Prescaler 134

Serial Peripheral Interface – SPI 135
SS Pin Functionality 140
Data Modes 143

USART 144
Overview 144
Clock Generation 145
Frame Formats 148
USART Initialization 149
Data Reception – The USART Receiver 154
Asynchronous Data Reception 157
Multi-processor Communication Mode 161
Accessing UBRRH/ UCSRC Registers 162
USART Register Description 163
Examples of Baud Rate Setting 168

Two-wire Serial Interface 172
Features 172
Two-wire Serial Interface Bus Definition 172
Data Transfer and Frame Format 173
Multi-master Bus Systems, Arbitration and Synchronization 176
Overview of the TWI Module 178
TWI Register Description 180
Using the TWI 183
Transmission Modes 186
Multi-master Systems and Arbitration 199

Analog Comparator 201
Analog Comparator Multiplexed Input 203

Analog to Digita l Converter 204
Features 204
Operation 205
Starting a Conversion 206

iv
2466R–AVR–06/08

ATmega16(L)

Prescaling and Conversion Timing 207
Changing Channel or Reference Selection 210
ADC Noise Canceler 211
ADC Conversion Result 216

JTAG Interface and On-chip Debug System 222
Features 222
Overview 222
Test Access Port – TAP 222
TAP Controller 224
Using the Boundary-scan Chain 225
Using the On-chip Debug System 225
On-chip Debug Specific JTAG Instructions 226
On-chip Debug Related Register in I/O Memory 227
Using the JTAG Programming Capabilities 227
Bibliography 227

IEEE 1149.1 (JTAG) Boundary-scan 228
Features 228
System Overview 228
Data Registers 228
Boundary-scan Specific JTAG Instructions 230
Boundary-scan Chain 232
ATmega16 Boundary-scan Order 241
Boundary-scan Description Language Files 245

Boot Loader Support – Read-Whil e-Write Self-Programming 246
Features 246
Application and Boot Loader Flash Sections 246
Read-While-Write and no Read-While-Write Flash Sections 246
Boot Loader Lock Bits 248
Entering the Boot Loader Program 249
Addressing the Flash during Self-Programming 251
Self-Programming the Flash 252

Memory Programming 259
Program And Data Memory Lock Bits 259
Fuse Bits 260
Signature Bytes 261
Calibration Byte 261
Page Size 262
Parallel Programming Parameters, Pin Mapping, and Commands 262
Parallel Programming 265
Serial Downloading 273
Programming via the JTAG Interface 278

v
2466R–AVR–06/08

ATmega16(L)

Electrical Charact eristics 291
Absolute Maximum Ratings* 291
DC Characteristics 291
External Clock Drive Waveforms 293
External Clock Drive 293
Two-wire Serial Interface Characteristics 294
SPI Timing Characteristics 295
ADC Characteristics 297

ATmega16 Typical Characteristics 299

Register Summary 331

Instruction Set Summary 333

Ordering Information 336

Packaging Information 337
44A 337
40P6 338
44M1 339

Errata 340
ATmega16(L) Rev. M 340
ATmega16(L) Rev. L 340
ATmega16(L) Rev. K 341
ATmega16(L) Rev. J 342
ATmega16(L) Rev. I 343
ATmega16(L) Rev. H 344

Datasheet Revision History 345
Rev. 2466R-06/08 345
Rev. 2466Q-05/08 345
Rev. 2466P-08/07 345
Rev. 2466O-03/07 345
Rev. 2466N-10/06 345
Rev. 2466M-04/06 346
Rev. 2466L-06/05 346
Rev. 2466K-04/05 346
Rev. 2466J-10/04 346
Rev. 2466I-10/04 346
Rev. 2466H-12/03 346
Rev. 2466G-10/03 346
Rev. 2466F-02/03 347
Rev. 2466E-10/02 348
Rev. 2466D-09/02 348

vi
2466R–AVR–06/08

ATmega16(L)

Rev. 2466C-03/02 348

Table of Contents i

vii
2466R–AVR–06/08

ATmega16(L)

2466R–AVR–06/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LI ABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTOR Y
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICU LAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR I NCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPT ION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATME L HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

